Review on the Performance Evaluation of Thermal Exchangers using Different Baffle Designs

Authors

  • Ajeet Kumar Mishra
  • Prof. Shamir Daniel
  • Prof. Amit Kumar Asthana

DOI:

https://doi.org/10.24113/ijoscience.v7i12.437

Keywords:

Heat Exchanger, Baffle, Heat Transfer, Reynolds number, CFD, Ribs, Baffle Angle, Helical Baffle, Triangular Baffles, Baffle Geometry.

Abstract

The thermal performance of a heat exchanger depends upon various parameters like inlet temperature of hot fluid, type of hot fluid, type of cold fluid, the shape of baffles, the material of baffles, baffles angle, and property of ribs. Basically fluid flow and heat transfer characteristics largely depend upon the Reynolds number (Re). Reynolds number is basically the ratio of inertia force to viscous force. Re is only the factor by which we can decide whether the fluid is laminar or turbulent in shell and tube type of heat exchanger. The heat exchanger is an adiabatic device in which heat is transferred from one fluid to another fluid across a plate surface. In this paper, we have introduced some special types of triangular baffles with rectangular channels. The purpose of this apparatus is to enhance the performance of the heat exchanger. Heat exchangers, nowadays, are one of the most important heat & mass transfer apparatuses in industries like oil refining; heat treatment plants, electric power generation, etc. are long service life.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ajeet Kumar Mishra

M.Tech Scholar

ME Thermal Engineering

Department of Mechanical Engineering

Truba Institute of Engineering and Information Technology
Bhopal, Madhya Pradesh,   India

Prof. Shamir Daniel

Assistant Professor

ME Thermal Engineering

Department of Mechanical Engineering

Truba Institute of Engineering and Information Technology
 Bhopal, Madhya Pradesh,  India

Prof. Amit Kumar Asthana

Assistant Professor

ME Thermal Engineering

Department of Mechanical Engineering

Truba Institute of Engineering and Information Technology
 Bhopal, Madhya Pradesh, India

References

Bichkar, P., Dandgaval, O., Dalvi, P., Godase, R., &Dey, T. (2018). Study of Shell and Tube Heat Exchanger with the Effect of Types of Baffles. Procedia Manufacturing, 20, 195–200. https://doi.org/10.1016/j.promfg.2018.02.028 DOI: https://doi.org/10.1016/j.promfg.2018.02.028

Mohammadi, M. H., Abbasi, H. R., Yavarinasab, A., &Pourrahmani, H. (2020). Thermal optimization of shell and tube heat exchanger using porous baffles. Applied Thermal Engineering, 170(September 2019), 115005. https://doi.org/10.1016/j.applthermaleng.2020.115005

P. Dutta and S. Dutta, Effect of baffle size, perforation and orientation on internal heat transfer enhancement, Int. J. Heat Mass Transfer 41 (1998) (19), pp. 3005–3013. DOI: https://doi.org/10.1016/S0017-9310(98)00016-7

HouariAmeur, “Effect of the baffle inclination on the flow and thermal fields in channel heat exchangers”, Results in Engineering, Volume 3, September 2019, 100021. DOI: https://doi.org/10.1016/j.rineng.2019.100021

YounesMenni, HouariAmeur, MohsenSharifpur& Mohammad HosseinAhmadi “Effects of in-line deflectors on the overall performance of a channel heat exchanger”, Engineering Applications of Computational Fluid Mechanics, 15:1, 512-529, DOI:10.1080/19942060.2021.1893820. DOI: https://doi.org/10.1080/19942060.2021.1893820

Houari AMEUR, Djamel SAHEL, Younes MENNI “Numerical Investigation of the Performance of Perforated Baffles In A Plate-Fin Heat Exchanger”, IJAER, 2020. DOI: https://doi.org/10.2298/TSCI190316090A

Aadil Ahmad Rather, VivekSheelYadav “review on performance of shell and tube heat exchangers configured with different baffle types”, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 9, 2019.

YounesMenni, HouariAmeur, Shao-Wen Yao*, Mohammed Amine Amraoui, Mustafa Inc, GiulioLorenzini, and Hijaz Ahmad “Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels”, Open Physics 2021; 19: 51–60. DOI: https://doi.org/10.1515/phys-2021-0005

Mohamed Salmi, YounesMenni “CFD-Based Simulation and Analysis of Hydrothermal Aspects in Solar Channel Heat Exchangers with Various Designed Vortex Generators”, CMES, vol.126, no.1, 2021. DOI: https://doi.org/10.32604/cmes.2021.012839

Ali J. Chamkha, YounesMenni, “Study of air flow around flat and arc-shaped baffles in shell-and-tube heat exchangers”, Mathematical Modelling of Engineering Problems Vol. 6, No. 1, March, 2019, pp. 77-84 DOI: https://doi.org/10.18280/mmep.060110

Benyoucef B., Menni Y. AzziA .Zidani C. “Numerical Analysis Of Turbulent Forced-convection Flow In A Channel With Staggered L-shaped Baffles”, Journal of New Technology and Materials, Volume 6, Numéro 2, Pages 44-55 2019 . DOI: https://doi.org/10.12816/0043933

Ahmed Azzi, YounesMenni, “Computational fluid dynamical analysis of turbulent heat transfer in a channel fitted with staggered V-Shaped baffles”, World Journal of Modelling and Simulation Vol. 14 (2018) No. 2, pp. 108-123.

Wen, J., Yang, H., Wang, S., Xu, S., Xue, Y., &Tuo, H. (2015). Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles. Energy Conversion and Management, 89, 438–448. https://doi.org/10.1016/j.enconman.2014.09.059 DOI: https://doi.org/10.1016/j.enconman.2014.09.059

Wang, Y., Liu, Z., Huang, S., Liu, W., & Li, W. (2011). Experimental investigation of shell-and-tube heat exchanger with a new type of baffles. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 47(7), 833–839. https://doi.org/10.1007/s00231-010-0590-x DOI: https://doi.org/10.1007/s00231-010-0590-x

Xiao, X., Zhang, L., Li, X., Jiang, B., Yang, X., & Xia, Y. (2013). Numerical investigation of helical baffles heat exchanger with different Prandtl number fluids. International Journal of Heat and Mass Transfer, 63, 434–444. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.001 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.001

AbbasianArani, A. A., &Moradi, R. (2019). Shell and tube heat exchanger optimization using new baffle and tube configuration. Applied Thermal Engineering, 157(May). https://doi.org/10.1016/j.applthermaleng.2019.113736 DOI: https://doi.org/10.1016/j.applthermaleng.2019.113736

El-Said, E. M. S., &Abou Al-Sood, M. M. (2019). Shell and tube heat exchanger with new segmental baffles configurations: A comparative experimental investigation. Applied Thermal Engineering, 150(December 2018), 803–810. https://doi.org/10.1016/j.applthermaleng.2019.01.039 DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.039

Wang, X., Zheng, N., Liu, Z., & Liu, W. (2018). Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles. International Journal of Heat and Mass Transfer, 124, 247–259. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.081 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.081

Andrzejczyk, R., Muszynski, T., &Gosz, M. (2018). Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry. Chemical Engineering and Processing - Process Intensification, 132, 114–126. https://doi.org/10.1016/j.cep.2018.08.017 DOI: https://doi.org/10.1016/j.cep.2018.08.017

E, J., Han, D., Deng, Y., Zuo, W., Qian, C., Wu, G., Peng, Q., & Zhang, Z. (2018). Performance enhancement of a baffle-cut heat exchanger of exhaust gas recirculation. Applied Thermal Engineering, 134, 86–94. https://doi.org/10.1016/j.applthermaleng.2018.01.109 DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.109

Elias, M. M., Shahrul, I. M., Mahbubul, I. M., Saidur, R., &Rahim, N. A. (2014). Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. International Journal of Heat and Mass Transfer, 70, 289–297. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.018

Bahiraei, M., Hangi, M., &Saeedan, M. (2015). A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy, 93, 2229–2240. https://doi.org/10.1016/j.energy.2015.10.120 DOI: https://doi.org/10.1016/j.energy.2015.10.120

Abbasi, H. R., SharifiSedeh, E., Pourrahmani, H., &Mohammadi, M. H. (2020). Shape optimization of segmental porous baffles for enhanced thermo-hydraulic performance of shell-and-tube heat exchanger. Applied Thermal Engineering, 180(July). https://doi.org/10.1016/j.applthermaleng.2020.115835 DOI: https://doi.org/10.1016/j.applthermaleng.2020.115835

Chen, J., Lu, X., Wang, Q., &Zeng, M. (2019). Experimental investigation on thermal-hydraulic performance of a novel shell-and-tube heat exchanger with unilateral ladder type helical baffles. Applied Thermal Engineering, 161(June), 114099. https://doi.org/10.1016/j.applthermaleng.2019.114099

El-said, E. M. S., & Al-saad, M. M. A. (2018). Experimental Investigation of Air Injection Effect on the Performance of Horizontal Shell and Multi-Tube Heat Exchanger with Baffles. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.02.001

Chen, D., Zhang, R., Cao, X., Chen, L., & Fan, X. (2021). International Journal of Heat and Mass Transfer Numerical investigation on performance improvement of latent heat exchanger with sextant helical baffles. International Journal of Heat and Mass Transfer, 178, 121606. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121606 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121606

Biçer, N., Engin, T., Yas, H., Büyükkaya, E., Ayd?n, A., &Topuz, A. (2020). International Journal of Thermal Sciences Design optimization of a shell-and-tube heat exchanger with novel three-zonal baffle by using CFD and taguchi method. 155(September 2019). https://doi.org/10.1016/j.ijthermalsci.2020.106417 DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106417

Wen, J., Yang, H., Wang, S., &Gu, X. (2017). International Journal of Heat and Mass Transfer PIV experimental investigation on shell-side flow patterns of shell and tube heat exchanger with different helical baffles. International Journal of Heat and Mass Transfer, 104, 247–259. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.048 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.048

Chen, T., Shu, G., Tian, H., Zhao, T., Zhang, H., & Zhang, Z. (2020). Performance evaluation of metal-foam baffl e exhaust heat exchanger for waste heat recovery. Applied Energy, 266(March), 114875. https://doi.org/10.1016/j.apenergy.2020.114875 DOI: https://doi.org/10.1016/j.apenergy.2020.114875

Yang, J., Lin, Y., Ke, H., Zeng, M., & Wang, Q. (2016). Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baf fl es. Energy, 115, 1572–1579. https://doi.org/10.1016/j.energy.2016.05.090 DOI: https://doi.org/10.1016/j.energy.2016.05.090

Bahiraei, M., Naseri, M., &Monavari, A. (2021). A CFD study on thermohydraulic characteristics of a nanofluid in a shell-and-tube heat exchanger fitted with new unilateral ladder type helical baffles. International Communications in Heat and Mass Transfer, 124(April), 105248. https://doi.org/10.1016/j.icheatmasstransfer.2021.105248 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105248

Tian, H., Zhao, T., Shi, L., Chen, T., Ma, X., & Zhang, H. (2020). Assessment and optimization of exhaust gas heat exchanger with porous baffles and porous fins. Applied Thermal Engineering, 178(November 2019), 115446. https://doi.org/10.1016/j.applthermaleng.2020.115446 DOI: https://doi.org/10.1016/j.applthermaleng.2020.115446

Dong, C., Li, D., Zheng, Y., Li, G., Suo, Y., & Chen, Y. (2016). An efficient and low resistant circumferential overlap trisection helical baffle heat exchanger with folded baffles. ENERGY CONVERSION AND MANAGEMENT, 113, 143–152. https://doi.org/10.1016/j.enconman.2016.01.055 DOI: https://doi.org/10.1016/j.enconman.2016.01.055

Chu, W., Ma, T., Zeng, M., Qu, T., Wang, L., & Wang, Q. (2014). Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baf fl es *. Energy, 75, 104–115. https://doi.org/10.1016/j.energy.2014.05.021 DOI: https://doi.org/10.1016/j.energy.2014.05.021

Mohammadi, M. H., Abbasi, H. R., Yavarinasab, A., &Pourrahmani, H. (2020). Thermal optimization of shell and tube heat exchanger using porous baffles. Applied Thermal Engineering, 170(September 2019), 115005. https://doi.org/10.1016/j.applthermaleng.2020.115005 DOI: https://doi.org/10.1016/j.applthermaleng.2020.115005

Elias, M. M., Shahrul, I. M., Mahbubul, I. M., Saidur, R., &Rahim, N. A. (2014). Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. International Journal of Heat and Mass Transfer, 70, 289–297. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.018 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.018

Chen, J., Lu, X., Wang, Q., &Zeng, M. (2019). Experimental investigation on thermal-hydraulic performance of a novel shell-and-tube heat exchanger with unilateral ladder type helical baffles. Applied Thermal Engineering, 161(June), 114099. https://doi.org/10.1016/j.applthermaleng.2019.114099 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114099

El-said, E. M. S., & Al-saad, M. M. A. (2018). Experimental Investigation of Air Injection Effect on the Performance of Horizontal Shell and Multi-Tube Heat Exchanger with Baffles. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.02.001 DOI: https://doi.org/10.1016/j.applthermaleng.2018.02.001

Downloads

Published

12/04/2021

How to Cite

Mishra, A. K. ., Daniel, P. S. ., & Asthana, P. A. K. (2021). Review on the Performance Evaluation of Thermal Exchangers using Different Baffle Designs. SMART MOVES JOURNAL IJOSCIENCE, 7(12), 1–10. https://doi.org/10.24113/ijoscience.v7i12.437