The Redesigning of Transformers Fins in Terms of Heat Transfer Rates

Authors

  • Vishwanath Sharma
  • Prof. Shashi Kant Sharma

DOI:

https://doi.org/10.24113/ijoscience.v8i2.469

Keywords:

Transformers, Fins Geometries, Cooling, Coolants

Abstract

Statistical and analytical research were carried out in order to optimize geometrical variables for organic convective heat flow from the Transformers tank, and several fin designs for transformers assembly were presented for geometrical optimization. The original rectangle, wavy, trapezoidal, as well as triangular fin geometries were used in the computational fluid dynamics research.

Downloads

Download data is not yet available.

Author Biographies

Vishwanath Sharma

M.Tech Scholar

Department Of Mechanical Engineering

School of Research and Technology People's University

Bhopal, M.P, India

Prof. Shashi Kant Sharma

Associate Professor

Department Of Mechanical Engineering

School of Research and Technology People's University

Bhopal, M.P, India

References

Pendyala, R., Ilyas, S. U., Lim, L. R., & Marneni, N. (2016). CFD Analysis of Heat Transfer Performance of Nanofluids in Distributor Transformer. Procedia Engineering, 148, 1162–1169. https://doi.org/10.1016/j.proeng.2016.06.619

Radakovic, Z., Jevtic, M., & Das, B. (2017). Dynamic thermal model of kiosk oil immersed transformers based on the thermal buoyancy driven air flow. International Journal of Electrical Power and Energy Systems, 92, 14–24. https://doi.org/10.1016/j.ijepes.2017.04.003

Taheri, A. A., Abdali, A., & Rabiee, A. (2019). A Novel Model for Thermal Behavior Prediction of Oil-Immersed Distribution Transformers with Consideration of Solar Radiation. IEEE Transactions on Power Delivery, 34(4), 1634–1646. https://doi.org/10.1109/TPWRD.2019.2916664

Raeisian, L., Niazmand, H., Ebrahimnia-Bajestan, E., & Werle, P. (2019). Thermal management of a distribution transformer: An optimization study of the cooling system using CFD and response surface methodology. International Journal of Electrical Power and Energy Systems, 104(May 2018), 443–455. https://doi.org/10.1016/j.ijepes.2018.07.043

Mahdi, M. S., Khadom, A. A., Mahood, H. B., Yaqup, M. A. R., Hussain, J. M., Salih, K. I., & Kazem, H. A. (2019). Effect of fin geometry on natural convection heat transfer in electrical distribution transformer: Numerical study and experimental validation. Thermal Science and Engineering Progress, 14(May), 100414. https://doi.org/10.1016/j.tsep.2019.100414

Gour, P., Chautre, K., Kotwalla, A., & Arora, T. (2012). Effective Conversion of Transformer Losses into Dissipated Heat. 2(6), 14–16.

Si, W. R., Fu, C. Z., Wu, X. T., Zhou, X., Li, X. G., Yu, Y. T., Jia, X. Y., & Yang, J. (2020). Numerical Study of Electromagnetic Loss and Heat Transfer in an Oil-Immersed Transformer. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6514650

Farhan, M., Saad Hameed, M., Suleman, H. M., & Anwar, M. (2019). Heat Transfer Enhancement in Transformers by Optimizing Fin Designs and Using Nanofluids. Arabian Journal for Science and Engineering, 44(6), 5733–5742. https://doi.org/10.1007/s13369-019-03726-9

Bahri, F. A. S., & Hasini, H. (2018). Flow and heat dissipation analysis in transformer substation with minimal ventilation using CFD. International Journal of Engineering and Technology(UAE), 7(4), 327–332. https://doi.org/10.14419/ijet.v7i4.35.22755

Zhang, Y., Wei, X., Fan, X., Wang, K., Zhuo, R., Zhang, W., Liang, S., Hao, J., & Liu, J. (2021). A Prediction Model of Hot Spot Temperature for Split-Windings Traction Transformer Considering the Load Characteristics. IEEE Access, 9, 22605–22615. https://doi.org/10.1109/ACCESS.2021.3056529

Shiravand, V., Faiz, J., Samimi, M. H., & Djamali, M. (2021). Improving the transformer thermal modeling by considering additional thermal points. International Journal of Electrical Power and Energy Systems, 128(December 2020), 106748. https://doi.org/10.1016/j.ijepes.2020.106748

Mehari, A., Xu, Z. Y., & Wang, R. Z. (2021). Multi-functional three-phase sorption solar thermal energy storage cycles for cooling, heating, and heat transformer. Applied Thermal Engineering, 189(January 2020). https://doi.org/10.1016/j.applthermaleng.2021.116765

Jurkovic, Z., Jurisic, B., & Zupan, T. (2021). Fast Hybrid Approach for Calculation of Losses in Outer Packages of Transformer Core Due to Perpendicular Stray Flux. IEEE Transactions on Magnetics, 57(6), 10–13. https://doi.org/10.1109/TMAG.2021.3072027

Gao, J. T., Xu, Z. Y., & Wang, R. Z. (2021). Enlarged temperature lift of hybrid compression-absorption heat transformer via deep thermal coupling. Energy Conversion and Management, 234(March). https://doi.org/10.1016/j.enconman.2021.113954

Ehsanifar, A., Allahbakhshi, M., Tajdinian, M., Dehghani, M., Montazeri, Z., Malik, O. P., & Guerrero, J. M. (2021). Transformer inter-turn winding fault detection based on no-load active power loss and reactive power. International Journal of Electrical Power and Energy Systems, 130(March), 107034. https://doi.org/10.1016/j.ijepes.2021.107034

Jon Gastelurrutia a,*, Juan Carlos Ramos a, Gorka S. Larraona a, Alejandro Rivas a, Josu Izagirre b, Luis del Río-“Numerical modelling of natural convection of oil inside distribution transformers” Applied Thermal Engineering 31 (2011) 493e505

Downloads

Published

02/15/2022

How to Cite

Sharma, V. ., & Sharma, P. S. K. . (2022). The Redesigning of Transformers Fins in Terms of Heat Transfer Rates. SMART MOVES JOURNAL IJOSCIENCE, 8(2), 17–22. https://doi.org/10.24113/ijoscience.v8i2.469

Issue

Section

Articles