A Review on Various Types of Fins Geometries in Plate fin and Tube Heat Exchangers

Authors

  • Anupama Yadav
  • Pankaj Badgaiyan
  • Amit Kumar Singh

DOI:

https://doi.org/10.24113/ijoscience.v8i2.477

Keywords:

Heat Exchangers, plate-fin heat exchangers, tube heat exchangers, plate fin and tube heat exchangers

Abstract

Fin-and-tube heat exchanging systems are the another very commonly utilised heat exchangers for thermal energy transformation, with implementations in air conditioners, cooling systems, the automotive sector, electrical gadgets, and other areas. The market for more effective refrigeration via smaller heat exchangers has resulted in extensive investigation on the subject. The thermal efficiency exploration methodologies and comprehensive flow and heat transfer analysing outcomes of fin-and-tube HEs are summarised in this review. This study also examined the massive heat transfer boosters, as well as their arrangement and shape. In addition, an overview of both theoretical and empirical research on the effectiveness of HEs is provided

Downloads

Download data is not yet available.

Author Biographies

Anupama Yadav

M.Tech Scholar

ME, Thermal Engineering

Truba Institute of Engineering &Information Technology

Bhopal, Madhya Pradesh, India

Pankaj Badgaiyan

Assistant Professor

ME, Thermal Engineering

Truba Institute of Engineering &Information Technology

Bhopal, Madhya Pradesh, India

Amit Kumar Singh

Assistant Professor

ME, Thermal Engineering

Truba Institute of Engineering &Information Technology

Bhopal, Madhya Pradesh, India

References

Adam, A. Y., Oumer, A. N., Najafi, G., Ishak, M., Firdaus, M., & Aklilu, T. B. (2020). State of the art on flow and heat transfer performance of compact fin-and-tube heat exchangers. Journal of Thermal Analysis and Calorimetry, 139(4), 2739–2768. https://doi.org/10.1007/s10973-019-08971-6

Deepika, K., & Sarviya, R. M. (2021). Application based review on enhancement of heat transfer in heat exchangers tubes using inserts. Materials Today: Proceedings, 44, 2362–2365. https://doi.org/10.1016/j.matpr.2020.12.436

Lindqvist, K., Skaugen, G., & Meyer, O. H. H. (2021). Plate fin-and-tube heat exchanger computational fluid dynamics model. Applied Thermal Engineering, 189, 116669. https://doi.org/10.1016/j.applthermaleng.2021.116669

Markovi?, S., Ja?imovi?, B., Geni?, S., Mihailovi?, M., Milovan?evi?, U., & Otovi?, M. (2019). Air side pressure drop in plate finned tube heat exchangers. International Journal of Refrigeration, 99, 24–29. https://doi.org/10.1016/j.ijrefrig.2018.11.038

Rao, R. V., Saroj, A., Oclo?, P., & Taler, J. (2020). Design Optimization of Heat Exchangers with Advanced Optimization Techniques: A Review. In Archives of Computational Methods in Engineering (Vol. 27, Issue 2). Springer Netherlands. https://doi.org/10.1007/s11831-019-09318-y

Sadeghianjahromi, A., & Wang, C. C. (2021). Heat transfer enhancement in fin-and-tube heat exchangers – A review on different mechanisms. Renewable and Sustainable Energy Reviews, 137(xxxx), 110470. https://doi.org/10.1016/j.rser.2020.110470

Taler, D., Taler, J., & Wrona, K. (2020). Transient response of a plate-fin-and-tube heat exchanger considering different heat transfer coefficients in individual tube rows. Energy, 195, 117023. https://doi.org/10.1016/j.energy.2020.117023

Zhang, K., Li, M. J., Liu, H., Xiong, J. G., & He, Y. L. (2021). A general and rapid method to evaluate the effect of flow maldistribution on the performance of heat exchangers. International Journal of Thermal Sciences, 170(July), 107152. https://doi.org/10.1016/j.ijthermalsci.2021.107152

Zhu, H., Yang, Z., Khan, T. A., Li, W., Sun, Z., Du, J., Zhang, Z., & Zhou, J. (2019). Thermal-hydraulic performance and optimization of tube ellipticity in a plate fin-and-tube heat exchanger. Journal of Electronic Packaging, Transactions of the ASME, 141(3). https://doi.org/10.1115/1.4043482

Taler, D., Taler, J., & Wrona, K. (2019). Transient behavior of a plate-fin-and-tube heat exchanger taking into account different heat transfer coefficients on the individual tube rows. E3S Web of Conferences, 128. https://doi.org/10.1051/e3sconf/201912804001

Basavarajappa, S., Manavendra, G., & Prakash, S. B. (2020). A review on performance study of finned tube heat exchanger. Journal of Physics: Conference Series, 1473(1). https://doi.org/10.1088/1742-6596/1473/1/012030

Li, W., Khan, T. A., Tang, W., & Minkowycz, W. J. (2018). Numerical study and optimization of corrugation height and angle of attack of vortex generator in the wavy fin-and-tube heat exchanger. Journal of Heat Transfer, 140(11), 1–11. https://doi.org/10.1115/1.4040609

HEAT TRANSFER ENHANCEMENT USING NON-EQUALLY STRUCTURE IN A PLATE-FIN HEAT EXCHANGER WITH OFFSET FINS Juan Du. (n.d.). 1–20.

Syuhada, A., Afandi, D., & Sofyan, S. E. (2020). Convective heat transfer study on the spiral finned tube heat exchanger under various fin pitch arrangements. IOP Conference Series: Earth and Environmental Science, 463(1). https://doi.org/10.1088/1755-1315/463/1/012024

Scholar, M. T., Mishra, A., Mudaiya, P. D. K., & Tenguria, P. N. (2020). A Review on Three-Dimensional Performance Analysis of Circular Fin Tube Heat Exchanger. 6(4), 2217–2220.

Javaherdeh, K., Vaisi, A., & Moosavi, R. (2018). The effects of fin height, fin-tube contact thickness and Louver length on the performance of a compact fin-and-tube heat exchanger. International Journal of Heat and Technology, 36(3), 825–834. https://doi.org/10.18280/ijht.360307

Ramezanpour Jirandeh, R., Ghazi, M., Sotoodeh, A. F., & Nikian, M. (2020). Plate-fin heat exchanger network modeling, design and optimization – a novel and comprehensive algorithm. Journal of Engineering, Design and Technology, 19(5), 1017–1043. https://doi.org/10.1108/JEDT-07-2020-0262

Zargoushi, A., Talebi, F., & Hosseini, S. H. (2021). Influence of fluid distributors on the performance of the industrial cold box with a plate-fin heat exchanger: A numerical study. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(20), 5160–5172. https://doi.org/10.1177/0954406220979327

Payambarpour, S. A., Alhuyi Nazari, M., Ahmadi, M. H., & Chamkha, A. J. (2019). Effect of partially wet-surface condition on the performance of fin-tube heat exchanger. International Journal of Numerical Methods for Heat and Fluid Flow, 29(10), 3938–3958. https://doi.org/10.1108/HFF-07-2018-0362

Oc?o?, P., ?opata, S., Nowak, M., & Benim, A. C. (2015). Numerical study on the effect of inner tube fouling on the thermal performance of high-temperature fin-and-tube heat exchanger. Progress in Computational Fluid Dynamics, 15(5), 290–306. https://doi.org/10.1504/PCFD.2015.072014

Hajabdollahi, H., & Hajabdollahi, Z. (2017). Investigating the effect of nanoparticle on thermo-economic optimization of fin and tube heat exchanger. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(6), 1127–1140. https://doi.org/10.1177/0954408916656677

Wu, X., Ma, Q., & Chu, F. (2017). Numerical simulation of frosting on fin-and-tube heat exchanger surfaces. Journal of Thermal Science and Engineering Applications, 9(3). https://doi.org/10.1115/1.4035925

Hajabdollahi, Z., Hajabdollahi, H., & Fu, P. F. (2017). The effect of using different types of nanoparticles on optimal design of fin and tube heat exchanger. Asia-Pacific Journal of Chemical Engineering, 12(6), 905–918. https://doi.org/10.1002/apj.2128

Gupta, A. K., Kumar, P., Sahoo, R. K., Sahu, A. K., & Sarangi, S. K. (2017). Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA. Journal of Computational Design and Engineering, 4(1), 60–68. https://doi.org/10.1016/j.jcde.2016.07.002

Biswas, N., Chatterjee, S., Das, M., Garai, A., Roy, P. C., & Mukhopadhyay, A. (2015). Analysis of Particle Image Velocimetry Measurements of Natural Convection in an Enclosure Using Proper Orthogonal Decomposition. Journal of Heat Transfer, 137(12), 1–10. https://doi.org/10.1115/1.4030910

Javaherdeh, K., Vaisi, A., Moosavi, R., & Esmaeilpour, M. (2017). Experimental and numerical investigations on louvered fin-and-tube heat exchanger with variable geometrical parameters. Journal of Thermal Science and Engineering Applications, 9(2). https://doi.org/10.1115/1.4035449

Díaz, D., & Valencia, A. (2017). Heat transfer in an oval tube heat exchanger with different kinds of longitudinal vortex generators. Heat Transfer Research, 48(18), 1707–1725. https://doi.org/10.1615/HeatTransRes.2017018543

Ma, Q., Wu, X. M., Chu, F., & Zhu, B. (2017). Numerical Simulation of Frosting on Wavy Fin-and-tube Heat Exchanger Surfaces. Journal of Physics: Conference Series, 891(1). https://doi.org/10.1088/1742-6596/891/1/012052

Sotoodeh, A. F., Amidpour, M., & Ghazi, M. (2015). Developing of constructal theory concept for plate-fin heat exchanger modelling, design and optimisation. International Journal of Exergy, 18(1), 22–45. https://doi.org/10.1504/IJEX.2015.072054

Sahel, D., Benzeguir, R., & Baki, T. (2015). Heat transfer enhancement in a fin and tube heat exchanger with isosceles vortex generators. Mechanika, 21(6), 457–464. https://doi.org/10.5755/j01.mech.21.6.12240

Downloads

Published

02/28/2022

How to Cite

Yadav, A. ., Badgaiyan, P. ., & Singh, A. K. . (2022). A Review on Various Types of Fins Geometries in Plate fin and Tube Heat Exchangers. SMART MOVES JOURNAL IJOSCIENCE, 8(2), 45–51. https://doi.org/10.24113/ijoscience.v8i2.477

Issue

Section

Articles