Analysis Utilizing AI Techniques for Optimum Performance At The Low Tension And The High Tension Line In BESS

Authors

  • Ajay kumar Gupta
  • Jyoti Bansal

DOI:

https://doi.org/10.24113/ijoscience.v7i12.442

Keywords:

ESS, BESS, Micro-grids, Distribution Generators, Types of BESS, AI, THD

Abstract

It has been a requisite for humanity to live since the electricity invented around an early 1900s. According to the electrical energy sector's economic constraints, power must be employed as quickly as practical after it is generated. Because storing large amounts of electrical energy is prohibitively expensive. However, as energy storage material becomes more accessible, dispersed production becomes more viable, especially with the Smart Grid concept.In this paper, we use the MATLAB - SIMULINK platform to investigate a battery energy storage system (BESS). We used an effective algorithm, which is really a part of artificial intelligence (AI), to develop a controller for a converter system.The research focused on the low tension line (regional loads) and the high tension line (HV) after the grid connection, where the framework also compels the electrical desire and reactive loads.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ajay kumar Gupta

M.Tech. Scholar
IES College of Technology

Bhopal, Madhya Pradesh, India

Jyoti Bansal

Assistant Professor
IES College of Technology

Bhopal, Madhya Pradesh, India

References

Alhejaj, S. M., & Gonzalez-Longatt, F. M. (2016). Investigation on grid-scale BESS providing inertial response support. 2016 IEEE International Conference on Power System Technology, POWERCON 2016. https://doi.org/10.1109/POWERCON.2016.7754049 DOI: https://doi.org/10.1109/POWERCON.2016.7754049

Mehrjerdi, H. (2019). Simultaneous load leveling and voltage profile improvement in distribution networks by optimal battery storage planning. Energy, 181, 916–926. https://doi.org/10.1016/j.energy.2019.06.021 DOI: https://doi.org/10.1016/j.energy.2019.06.021

Gbadega Peter, A., &Saha, A. K. (2020). Adaptive model-based receding horizon control of interconnected renewable-based power micro-grids for effective control and optimal power exchanges. 2020 International SAUPEC/RobMech/PRASA Conference, SAUPEC/RobMech/PRASA 2020. https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041136 DOI: https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041136

Xie, C., Wang, D., Lai, C. S., Wu, R., Huang, J., & Lai, L. L. (2020). Optimal Sizing of Battery Energy Storage System in Smart Microgrid with Air-conditioning Resources. 2020 IEEE International Smart Cities Conference, ISC2 2020. https://doi.org/10.1109/ISC251055.2020.9239044 DOI: https://doi.org/10.1109/ISC251055.2020.9239044

Du, W., Wang, H. F., Cheng, S., Wen, J. Y., & Dunn, R. (2011). Robustness of damping control implemented by Energy Storage Systems installed in power systems. International Journal of Electrical Power and Energy Systems, 33(1), 35–42. https://doi.org/10.1016/j.ijepes.2010.08.006 DOI: https://doi.org/10.1016/j.ijepes.2010.08.006

Koch-Ciobotaru, C., Saez-De-Ibarra, A., Martinez-Laserna, E., Stroe, D. I., Swierczynski, M., & Rodriguez, P. (2015). Second life battery energy storage system for enhancing renewable energy grid integration. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 1, 78–84. https://doi.org/10.1109/ECCE.2015.7309672 DOI: https://doi.org/10.1109/ECCE.2015.7309672

Jinlei, S., Lei, P., Ruihang, L., Qian, M., Chuanyu, T., &Tianru, W. (2019). Economic Operation Optimization for 2nd Use Batteries in Battery Energy Storage Systems. IEEE Access, 7, 41852–41859. https://doi.org/10.1109/ACCESS.2019.2902402 DOI: https://doi.org/10.1109/ACCESS.2019.2902402

ZHAO, H., WU, Q., WANG, C., CHENG, L., & RASMUSSEN, C. N. (2015). Fuzzy logic based coordinated control of battery energy storage system and dispatchable distributed generation for microgrid. Journal of Modern Power Systems and Clean Energy, 3(3), 422–428. https://doi.org/10.1007/s40565-015-0119-x DOI: https://doi.org/10.1007/s40565-015-0119-x

Liu, Y., BengGooi, H., & Xin, H. (2018). Distributed energy management for the multi-microgrid system based on ADMM. IEEE Power and Energy Society General Meeting, 2018-January, 1–5. https://doi.org/10.1109/PESGM.2017.8274099 DOI: https://doi.org/10.1109/PESGM.2017.8274099

Abusief, F., Caldon, R., &Bignucolo, F. (2016). Remote islanded distribution networks supplied by BESS integrated PV generation units. EEEIC 2016 - International Conference on Environment and Electrical Engineering. https://doi.org/10.1109/EEEIC.2016.7555634 DOI: https://doi.org/10.1109/EEEIC.2016.7555634

Bahloul, M., &Khadem, S. K. (2018). Design and control of energy storage system for enhanced frequency response grid service. Proceedings of the IEEE International Conference on Industrial Technology, 2018-February, 1189–1194. https://doi.org/10.1109/ICIT.2018.8352347 DOI: https://doi.org/10.1109/ICIT.2018.8352347

Hong, M., Yu, X., Yu, N. P., &Loparo, K. A. (2016). An Energy Scheduling Algorithm Supporting Power Quality Management in Commercial Building Microgrids. IEEE Transactions on Smart Grid, 7(2), 1044–1056. https://doi.org/10.1109/TSG.2014.2379582 DOI: https://doi.org/10.1109/TSG.2014.2379582

Serban, I., &Marinescu, C. (2013). Enhanced Control Strategy of Three-Phase. c.

Lee, H., Byeon, G. S., Jeon, J. H., Hussain, A., Kim, H. M., Rousis, A. O., &Strbac, G. (2019). An Energy Management System with Optimum Reserve Power Procurement Function for Microgrid Resilience Improvement. IEEE Access, 7(c), 42577–42585. https://doi.org/10.1109/ACCESS.2019.2907120 DOI: https://doi.org/10.1109/ACCESS.2019.2907120

Bajaj, M., Aggarwal, S., & Singh, A. K. (2020). Power quality concerns with integration of RESs into the smart power grid and associated mitigation techniques. PIICON 2020 - 9th IEEE Power India International Conference. https://doi.org/10.1109/PIICON49524.2020.9113008 DOI: https://doi.org/10.1109/PIICON49524.2020.9113008

Li, X., Hui, D., Wu, L., & Lai, X. (2010). Control strategy of battery state of charge for wind/battery hybrid power system. IEEE International Symposium on Industrial Electronics, 1, 2723–2726. https://doi.org/10.1109/ISIE.2010.5637016 DOI: https://doi.org/10.1109/ISIE.2010.5637016

Hussain, J., Hussain, M., Raza, S., & Siddique, M. (2019). Power quality improvement of grid connected wind energy system using DSTATCOM-BESS. International Journal of Renewable Energy Research, 9(3), 1388–1397.

Kim, K., Yoon, T., Byeon, G., Jung, H., Kim, H., & Jang, G. (2012). Power demand and power quality analysis of EV charging station using BESS in MicroGrid. 2012 IEEE Vehicle Power and Propulsion Conference, VPPC 2012, 996–1001. https://doi.org/10.1109/VPPC.2012.6422752 DOI: https://doi.org/10.1109/VPPC.2012.6422752

Lawder, M. T., Suthar, B., Northrop, P. W. C., De, S., Hoff, C. M., Leitermann, O., Crow, M. L., Santhanagopalan, S., & Subramanian, V. R. (2014). Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications. Proceedings of the IEEE, 102(6), 1014–1030. https://doi.org/10.1109/JPROC.2014.2317451 DOI: https://doi.org/10.1109/JPROC.2014.2317451

Downloads

Published

12/04/2021

How to Cite

Gupta, A. kumar ., & Bansal, J. . (2021). Analysis Utilizing AI Techniques for Optimum Performance At The Low Tension And The High Tension Line In BESS. SMART MOVES JOURNAL IJOSCIENCE, 7(12), 11–18. https://doi.org/10.24113/ijoscience.v7i12.442