Second Generation Biofuel – An Alternative Clean Fuel

Authors

  • Shalu Patel M. Tech, Department of Energy Center, Maulana Azad National Institute of Technology, Bhopal, M.P, India
  • Savita Dixit Professor and Head, Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, M.P, India
  • Kavita Gidwani Suneja Assistant Professor, Department of Energy Center, Maulana Azad National Institute of Technology, Bhopal, M.P, India
  • Nilesh Tipan Phd Scholar, Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, M.P, India

DOI:

https://doi.org/10.24113/ijoscience.v7i3.364

Keywords:

Renewable Energy, Automobiles, Biodiesel, Biomass. Renewable Energy, Automobiles, Biodiesel, Biomass.

Abstract

Renewable energy resources are in high demand to decrease dependence on fossil fuels and mitigate greenhouse gas emissions. Biofuel industries, particularly bioethanol and biodiesel, have been rapidly increasing in tandem with agricultural production over more than a decade. First-generation biofuel manufacturing is heavily reliant on agriculture food sources like maize, sugarcane, sugar beets, soybeans, and canola.  As a result, the intrinsic competitiveness among foods and fuels has been a point of contention in community for the past couple of years. Existing technological advancements in research and innovation have paved the way for the manufacturing of next-generation biofuels from a variety of feedstock’s, including agricultural waste materials, crops remnants and cellulosic biomass from high-yielding trees and bushes varieties.  This report discusses the existing state of second-generation biofuel manufacturing as well as the feedstock utilized in fuel production, biofuel production globally and the current situation in India. This study also explores the current advancements in the findings and advancement of second-generation biofuel extraction from various feedstock’s. The forthcoming directions of agriculture and energy industrial sectors has also been addressed in order to feed the world 's growing population and to fuel the world's most energy-intensive industry, transportation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Xu, Y., and Liu, H. Y. 2009. Development and expectation of the energy plant. Chinese Agricultural Science Bulletin. 25, 297-300.

Ballesteros, I., Negro, M. J., Oliva, J. M., Cabanas, A., Manzanares, P. and Ballesteros, M. 2006. Ethanol production from steam explosion pretreated wheat straw. Twenty seventh symposium on Biotechnology for fuels and chemicals. Springer. 496-508. DOI: https://doi.org/10.1007/978-1-59745-268-7_41

Demirbas, A. 2007. Progress and Recent Trends in Biofuels. Prog. Energ. Combust. 33, 1-8. DOI: https://doi.org/10.1016/j.pecs.2006.06.001

Millati, R., Niklasson, C. and Taherzadeh, M. J. 2002. Effect of pH, time and temperature of overliming on detoxification of dilute acid hydrolysates for fermentation by S. cerevisiae. Process. Biochem. 38 (4), 515-522. DOI: https://doi.org/10.1016/S0032-9592(02)00176-0

Lin, Y. and Tanaka, S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69 (6), 627-642. DOI: https://doi.org/10.1007/s00253-005-0229-x

Sharma, Nisha, and Nivedita Sharma. "Second generation bioethanol production from lignocellulosic waste and its future perspectives: a review." Int J Curr Microbiol Appl Sci 7.5 (2018): 1285-1290. DOI: https://doi.org/10.20546/ijcmas.2018.705.155

Muktham, R., Bhargava, S. K., Bankupalli, S. and Ball, A. S. 2016. A Review on 1st

Werpy, T. and Petersen, G. 2004. Top value added chemicals from Biomass. National Renewable Energy Laboratory.

Brennam, L. and Owende, P. 2010. Biofuels from microalgae- A review of technologies for production, processing and extraction of biofuels and coproducts. Renew. Sust. Energ. Rev. 14, 557-577. DOI: https://doi.org/10.1016/j.rser.2009.10.009

Nigam, P. S. and Singh, A. 2011. Production of liquid biofuels from renewable resources. Prog. Energ. Combust. 37, 52-58. DOI: https://doi.org/10.1016/j.pecs.2010.01.003

Karthikeyan, S. 2012. A critical Review: Microalgae as a renewable source for biofuel production. Int. J. Eng. Res. Technol. 1 (4), 1-6.

Tiwari G., Shivangi, Sharma, S. and Prasad, R. 2015. Bioethanol production: Future Prospects from non- additional sources in India. Int. J. Res. Biosci. 4 (4), 1-15.

EurActive, Biofuels: the Next Generation. http://www.euractiv.com/en/ energy/biofuels-generation/article-165951 [July 4, 2008].

Gressel J, Transgenics are imperative for biofuel crops. Plant Sci 174:246–263 (2008). DOI: https://doi.org/10.1016/j.plantsci.2007.11.009

Herrera S, Bonkers about biofuels. Nature Biotechnol 24:755–760 (2006). DOI: https://doi.org/10.1038/nbt0706-755

Li A, Antizar-Ladislao B and Khraisheh M, Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 30:189–196 (2007). DOI: https://doi.org/10.1007/s00449-007-0114-3

Wyman CE, Ethanol from lignocellulosic biomass - technology, economics, and opportunities. Bioresour Technol 50:3–16 (1994). DOI: https://doi.org/10.1016/0960-8524(94)90214-3

Gressel J, Vered Y, Bar-Lev S, Milstein O and Flowers HM, Partial supression of cellulase action by arti? cial ligni? cation of cellulose. Plant Sci Lett 32:349–353 (1983). DOI: https://doi.org/10.1016/0304-4211(83)90042-1

Tomé M and Verwijst T, Modelling competition in short rotation forests. Biomass Bioenerg 11:177–187 (1996). DOI: https://doi.org/10.1016/0961-9534(96)00042-6

Demirbas A, Biogas production from the organic fraction of municipal solid waste. Energy Sour, Part A: Recovery. Util Environ Eff 28:1127–1134 (2006). DOI: https://doi.org/10.1080/009083190910479

Anselmo P and Badr O, Biomass resources for energy in north-eastern Brazil. Appl Energy 77:51–67 (2004). DOI: https://doi.org/10.1016/S0306-2619(03)00095-3

McIvor A and Evans L, A sustainable biofuelled future? Cleantech 1:5–9 (2008).

Chapotin SM and Wolt JD, Genetically modi? ed crops for the bioeconomy: meeting public and regulatory expectations. Transgenic Res doi: 10.1007/s11248-007-9122-y (in press, 2007). DOI: https://doi.org/10.1007/s11248-007-9122-y

Fairless D, Biofuel: the little shrub that could - maybe. Nature 449:652–655 (2007). DOI: https://doi.org/10.1038/449652a

Azam MM, Waris A, Nahar NM, Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 29:293–302 (2005). DOI: https://doi.org/10.1016/j.biombioe.2005.05.001

Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel ME, Keller M, McMillan JD, Sheehan JJ and Wyman CE, How biotech can transform biofuels. Nature Biotechnol 26:169–172 (2008). DOI: https://doi.org/10.1038/nbt0208-169

Antoni D, Zverlov VV and Schwarz WH, Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35 (2007). DOI: https://doi.org/10.1007/s00253-007-1163-x

Hamelinck CN, Van Hooijdonk G and Faaij APC, Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384–410 (2005). DOI: https://doi.org/10.1016/j.biombioe.2004.09.002

Lynd L, Greene N, Dale B, Laser M, Lashof D, Wang M and Wyman C, Energy returns on ethanol production. Science 312:1746–1747 (2006). DOI: https://doi.org/10.1126/science.312.5781.1746

Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M and Ladisch M, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673-686 (2005). DOI: https://doi.org/10.1016/j.biortech.2004.06.025

Kim S and Dale BE, Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375 (2004). DOI: https://doi.org/10.1016/j.biombioe.2003.08.002

McMillan JD, Conversion of hemicellulose hydrolyzates to ethanol. Enzymatic Conversion of Biomass for Fuels Production. ACS Symposium Series. 566:411–437 (1994). DOI: https://doi.org/10.1021/bk-1994-0566.ch021

Sun Y and Cheng JY, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11 (2002). DOI: https://doi.org/10.1016/S0960-8524(01)00212-7

Mtui G and Nakamura Y, Bioconversion of lignocellulosic waste from selected dumping sites in Dar es Salaam, Tanzania. Biodegradation 16:493–499 (2005). DOI: https://doi.org/10.1007/s10532-004-5826-3

Demirbas AH and Demirbas I, Importance of rural bioenergy for developing countries. Energy Convers Manage 48:2386–2398 (2007). DOI: https://doi.org/10.1016/j.enconman.2007.03.005

Saka S and Kusdiana D, Biodiesel fuel fom rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231 (2001). DOI: https://doi.org/10.1016/S0016-2361(00)00083-1

Atsumi S, Hanai T and Liao JC, Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–90 (2008). DOI: https://doi.org/10.1038/nature06450

Schwarz WH, Slattery M and Gapes JR, The ABC of ABE. Bio World Europe 2:8–10 (2007).

Awang GM, Jones GA and Ingledew WM, The acetone-butanol-ethanol fermentation. Crit Rev Microbiol 15:33–67. DOI: https://doi.org/10.3109/10408418809104464

Gerina PA, Vliegen F and Jossart JM, Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99:2620–2627 (2008). DOI: https://doi.org/10.1016/j.biortech.2007.04.049

Ganesh PS, Sanjeevi R, Gajalakshmi S, Ramasamy EV and Abbasi SA, Recovery of methane-rich gas from solid-feed anaerobic digestion of ipomoea (Ipomoea carnea) Bioresour Technol 99:812–818 (2008) DOI: https://doi.org/10.1016/j.biortech.2007.01.024

Demirbas A, Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples. Fuel 80:1885–1891 (2001). DOI: https://doi.org/10.1016/S0016-2361(01)00070-9

Bartacek J, Zabranska J and Lens PNL, Developments and constrains in fermentative hydrogen production. Biofuels Bioprod Bioref 1:201–214 (2007). DOI: https://doi.org/10.1002/bbb.17

Younesi H, Najafpour G, Ku Ismail KS, Mohamed AR and Kamaruddin AH, Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum. Bioresour Technol 99:2612–2619 (2008). DOI: https://doi.org/10.1016/j.biortech.2007.04.059

Hulshoff Pol LW, De Castro Lopes SI, Lettinga G and Lens PNL, Anaerobic sludge granulation. Water Res 38:1376–1389 (2004) DOI: https://doi.org/10.1016/j.watres.2003.12.002

Bennet S, The biore? nery concept. Cleantech 1:14–15 (2008).

Downloads

Published

03/26/2021

How to Cite

Patel, S. ., Dixit, S. ., Suneja, K. G. ., & Tipan, N. (2021). Second Generation Biofuel – An Alternative Clean Fuel. SMART MOVES JOURNAL IJOSCIENCE, 7(3), 13–21. https://doi.org/10.24113/ijoscience.v7i3.364

Issue

Section

Articles