Convolutional Neural Network based Intelligent Network Intrusion Detection System


  • Levina Bisen M.Tech. Scholar, Department of CSE, VITS Bhopal (M.P), India
  • Sumit Sharma Professor, Department of CSE, VITS Bhopal (M.P), India



Intrusion Detection System, Deep Learning, Convolution neural network, Random Forest, NSL-KDD, UNSW-NB 15.


Today cyberspace is developing tremendously, and the Intrusion Detection System (IDS) plays a key role in information security. The IDS, which operates at the network and host levels, should be able to identify various malicious attacks. The job of network-based IDSs is to distinguish between normal and malicious traffic data and trigger an alert in the event of an attack. In addition to traditional signature-based and anomaly-based approaches, many researchers have used various deep learning (DL) techniques to detect intruders, as DL models are capable of automatically extracting salient features from the input data packets. The application of the Convolutional Neural Network (CNN), which is often used to solve research problems in the visual and visual fields, is not much explored for IDS. In this research work the proposed model for intrusion detection is based on feature selection and reduction using CNN and classification using random forest. As compared to some existing work the proposed algorithm proves its efficiency in terms of high accuracy and high detection rate.


Download data is not yet available.


De Boer, P., Pels, M, “Host-Based Intrusion Detection Systems”, Amsterdam University, Amsterdam, 2005.

Garcia-Teodoro, P., “Anomaly-based network intrusion detection: techniques”, systems and challenges. Comput. Security Vol. 28. Issue, pp. 18–28, 2009.

J. Ryan, M. Lin, and R. Miikkulainen, “Intrusion Detection with Neural Networks,” Conference in Neural Information Processing Systems, 943–949.

A. K. Ghosh and A. Schwartzbard, “A Study in Using Neural Networks for Anomaly and Misuse Detection,” Conference on USENIX Security Symposium, Volume 8, pp. 12–12, 1999.

P. L. Nur, A. N. Zincir-heywood, and M. I. Heywood, “Host-Based Intrusion Detection Using Self-Organizing Maps,” in Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1714–1719, 2002.

K. Labib and R. Vemuri, “NSOM: A Real-Time Network-Based Intrusion Detection System Using Self-Organizing Maps,” 2000.

Sharma, R.K., Kalita, H.K., Issac, B., “Different firewall techniques: a survey”, International Conference on Computing, Communication and Networking Technologies (ICCCNT), IEEE, 2014.

Meng, Y.-X., “The practice on using machine learning for network anomaly intrusion detection”, International Conference on Machine Learning and Cybernetics (ICMLC), Vol. 2, IEEE, 2011.

Feng, W., “Mining network data for intrusion detection through combining SVMs with ant colony networks”, Future Generation Computer, System, Vol. 37, pp. 127–140, 2014.

Manjula C. Belavagi and Balachandra Muniyal, “Performance Evaluation of Supervised Machine Learning Algorithms for Intrusion Detection, Procedia Computer Science”, Elsevier, 2016.

Saad Mohamed Ali Mohamed Gadal and Rania A. Mokhtar, “Anomaly Detection Approach using Hybrid Algorithm of Data Mining Technique”, International Conference on Communication, Control, Computing and Electronics Engineering, IEEE, 2017.

N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A Deep Learning Approach to Network Intrusion Detection," in IEEE Transactions on Emerging Topics in Computational Intelligence, Vol. 2, No. 1, pp. 41-50, Feb. 2018.

R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat and S. Venkatraman, "Deep Learning Approach for Intelligent Intrusion Detection System," in IEEE Access, Vol. 7, pp. 41525-41550, 2019.

M. Ishaque and L. Hudec, "Feature extraction using Deep Learning for Intrusion Detection System," 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 2019, pp. 1-5.



09/16/2020 — Updated on 10/21/2020


How to Cite

Bisen, L. ., & Sharma, S. . (2020). Convolutional Neural Network based Intelligent Network Intrusion Detection System. SMART MOVES JOURNAL IJOSCIENCE, 6(9), 1–4. (Original work published September 16, 2020)