A Review on Image Contrast Enhancement Techniques
DOI:
https://doi.org/10.24113/ijoscience.v5i7.217Keywords:
Image enhancement, Image quality, Digital image processing.Abstract
The purpose of image enhancement and image restoration techniques is to perk up a quality and feature of an image that result in improved image than the original one. Unlike the image restoration, image enhancement is the modification of an image to alter impact on the viewer. Generally enhancement distorts the original digital values; therefore enhancement is not done until the restoration processes are completed. In image enhancement the image features are extracted instead of restoration of degraded image. Image enhancement is the process in which the degraded image is handled and the appearance of the image by visual is improved. It is a subjective process and increases contrast of image but image restoration is a more objective process than image enhancement. Many research work have been done for image enhancement. In this paper, different techniques and algorithms are discussed for contrast enhancement.
Downloads
References
[2] Singh, P.K., Panda, R.K., Sangwan, O.P.: A Critical Analysis on Software Fault Prediction Techniques, published in World Applied Sciences Journal, Vol. 33, No. 3, pp. 371–379, 2015.
[3] Singh, P. K., Agarwal, D., Gupta, A.: A Systematic Review on Software Defect Prediction, published in Computing for Sustainable Global Development (INDIACom), IEEE, pp. 1793– 97, 2015.
[4] Negi, S.S., Bhandari, Y.S.: A hybrid approach to Image Enhancement using Contrast Stretching on Image Sharpening and the analysis of various cases arising using histogram, published in Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–6, 2014.
[5] Wu, C., Liu, Z., Jiang, H.: Catenary image enhancement using wavelet-based contourlet transform with cycle translation, published in Optik-International Journal for Light and Electron Optics, Vol. 125, No. 15, pp. 3922–3925, 2014.
[6] Arunachalam, S., Khairnar, S.M., Desale, B.S.: Implementation of fast fourier transform and vedic algorithm for image enhancement. Appl. Math. Sci. 9(45), 2221–2234 (2015).
[7] Ramiz, M.A., Quazi, R.: Design of an efficient image enhancement algorithms using hybrid technique. Int. J. Recent Innov. Trends Comput. Commun. 5(6), 710–713 (2017)
[8] Pawar, M.M., Kulkarni, N.P.: Image resolution enhancement using multi-wavelet transforms with interpolation technique. IOSR J. Electr. Electron. Eng. 9(3), 9–13 (2014).
[9] Sumathi, M., Murthi, V.K.: Image enhancement based on discrete wavelet transform. IIOABJ 7(10), 12–15 (2016).
[10] Arya, A.R., Sreeletha, S.H.: Resolution enhancement of images using multi-wavelet and interpolation techniques. Int. J. Adv. Res. Comput. Commun. Eng. 5(7), 228–231 (2016).
[11] Badgujar, P.N., Singh, J.K.: Underwater image enhancement using generalized histogram equalization, discrete wavelet transform and KL-transform. Int. J. Innov. Res. Sci. Eng. Technol. 6(6), 11834–11840 (2017).
[12] Kaur, G., Vashist, S.: A robust approach for medical image enhancement using DTCWT. Int. J. Comput. Appl. 167(6), 26–29 (2017).
[13] HemaLatha, M., Vardarajan, S.: Resolution enhancement of low resolution satellite images using dual-tree complex wavelet transform. Int. J. Sci. Eng. Res. 8(5), 1361–1364 (2017).
[14] Kumar, B.P.S.: Image enhancement using discrete curvelet transform. Int. Res. J. Eng. Technol. 2(8), 1252–1259 (2015).
[15] Farzam, S., Rastgarpour, M.: An image enhancement method based on curvelet transform for CBCT-images. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 11(6), 200–206 (2017).
[16] Fan, Z., Bi, D., Gao, S., He, L., Ding, W.: Adaptive enhancement for infrared image using shearlet frame. J. Opt. 18, 1–11 (2016).
[17] Tong, Y., Chen, J.: Non-linear adaptive image enhancement in wireless sensor networks based on nonsubsampled shearlet transform. EURASIP J. Wirel. Commun. Netw. 46 (2017).
[18] Favorskayaa, M.N., Savchinaa, E.I.: Content preserving watermarking for medical images using shearlet transform and SVD. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W4, pp. 101–108 (2017).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Pooja Patel, Arpana Bhandari

This work is licensed under a Creative Commons Attribution 4.0 International License.
IJOSCIENCE follows an Open Journal Access policy. Authors retain the copyright of the original work and grant the rights of publication to the publisher with the work simultaneously licensed under a Creative Commons CC BY License that allows others to distribute, remix, adapt, and build upon your work, even commercially, as long as they credit you for the original creation. Authors are permitted to post their work in institutional repositories, social media or other platforms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.