A Study on Enhancing Channel Estimation in Vehicular Communications: Metamaterial-Enhanced Microstrip Antennas


  • Sachin Bandewar
  • Virendra S. Chaudhary




Vehicular communication systems play a pivotal role in modern transportation, offering solutions for traffic management, road safety, and infotainment services. Effective optimization of channel estimation in these systems is imperative to overcome inherent challenges. This paper has explored the issues that hinder reliable and efficient channel estimation in vehicular communications. High mobility and dynamic environments, multipath fading, heterogeneous networks, scalability, and security and privacy concerns were identified as key challenges. Addressing these challenges is crucial for ensuring the robustness and effectiveness of vehicular communication systems. By advancing channel estimation techniques, we can enhance data throughput, reduce latency, and improve overall network performance, ultimately contributing to safer and more efficient transportation systems.


Download data is not yet available.


Metrics Loading ...

Author Biographies

Sachin Bandewar

Department of Electronics and Communication Engineering,

RKDF University

Bhopal, Madhya Pradesh, India

Virendra S. Chaudhary

Department of Electronics and Communication Engineering,

RKDF University

Bhopal, Madhya Pradesh, India


L. Liang, H. Peng, G. Li, Xuemin, and X. Shen, “Vehicular Communications: A Physical Layer Perspective,” IEEE Trans. Veh. Technol., vol. PP, 2017, doi: 10.1109/TVT.2017.2750903. DOI: https://doi.org/10.1109/TVT.2017.2750903

A. Paul, N. Chilamkurti, A. Daniel, and S. Rho, “Chapter 4 - Evaluation of vehicular network models,” in Intelligent Vehicular Networks and Communications, A. Paul, N. Chilamkurti, A. Daniel, and S. Rho, Eds. Elsevier, 2017, pp. 77–112. doi: https://doi.org/10.1016/B978-0-12-809266-8.00004-1. DOI: https://doi.org/10.1016/B978-0-12-809266-8.00004-1

J. Yang, J. Li, S. Zhou, D. Li, and G. Yang, “A Polarization and Frequency Reconfigurable Microstrip Antenna for Vehicular Communication System Application,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 623–631, 2023, doi: 10.1109/TVT.2022.3202973. DOI: https://doi.org/10.1109/TVT.2022.3202973

A. K. S. Ajay Kumar Dwivedi Anand Sharma and V. Singh, “Circularly Polarized Quad-Port MIMO Dielectric Resonator Antenna with Beam Tilting Feature for Vehicular Communication,” IETE Tech. Rev., vol. 39, no. 2, pp. 389–401, 2022, doi: 10.1080/02564602.2020.1862714. DOI: https://doi.org/10.1080/02564602.2020.1862714

Y. Zhu, B. Mao, and N. Kato, “Intelligent Reflecting Surface in 6G Vehicular Communications: A Survey,” IEEE Open J. Veh. Technol., vol. 3, pp. 266–277, 2022, doi: 10.1109/OJVT.2022.3177253. DOI: https://doi.org/10.1109/OJVT.2022.3177253

M. Jian et al., “Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques,” Intell. Converg. Networks, vol. 3, no. 1, pp. 1–32, 2022, doi: 10.23919/ICN.2022.0005. DOI: https://doi.org/10.23919/ICN.2022.0005

S. N. Sur and R. Bera, “Intelligent reflecting surface assisted MIMO communication system: A review,” Phys. Commun., vol. 47, p. 101386, 2021, doi: https://doi.org/10.1016/j.phycom.2021.101386. DOI: https://doi.org/10.1016/j.phycom.2021.101386

R. Deng et al., “Reconfigurable Holographic Surfaces for Future Wireless Communications,” IEEE Wirel. Commun., vol. 28, no. 6, pp. 126–131, 2021, doi: 10.1109/MWC.001.2100204. DOI: https://doi.org/10.1109/MWC.001.2100204

H. Wang et al., “Dynamic Metasurface Antennas for MIMO-OFDM Receivers With Bit-Limited ADCs,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2643–2659, 2021, doi: 10.1109/TCOMM.2020.3040761. DOI: https://doi.org/10.1109/TCOMM.2020.3040761

Y. Fu, T. Shen, and J. Dou, “Mutual Coupling Reduction of a Multiple-Input Multiple-Output Antenna Using an Absorber Wall and a Combline Filter for V2X Communication,” Sensors, vol. 23, no. 14, 2023, doi: 10.3390/s23146355. DOI: https://doi.org/10.3390/s23146355

W. Zhang, T. Kim, and S.-H. Leung, “A Sequential Subspace Method for Millimeter Wave MIMO Channel Estimation,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5355–5368, 2020, doi: 10.1109/TVT.2020.2983963. DOI: https://doi.org/10.1109/TVT.2020.2983963

C. Hu, L. Dai, T. Mir, Z. Gao, and J. Fang, “Super-Resolution Channel Estimation for MmWave Massive MIMO With Hybrid Precoding,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8954–8958, 2018, doi: 10.1109/TVT.2018.2842724. DOI: https://doi.org/10.1109/TVT.2018.2842724

M. T. Nguyen and L. B. Le, “Interference Cancellation, Channel Estimation, and Symbol Detection for Communications on Overlapping Channels,” IEEE Access, vol. 8, pp. 89822–89838, 2020, doi: 10.1109/ACCESS.2020.2993582. DOI: https://doi.org/10.1109/ACCESS.2020.2993582

J.-C. Liu and C.-D. Chung, “Distributed Estimation in a Wireless Sensor Network Using Hybrid MAC,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3424–3435, 2011, doi: 10.1109/TVT.2011.2160302. DOI: https://doi.org/10.1109/TVT.2011.2160302

X. Ma, F. Yang, S. Liu, J. Song, and Z. Han, “Sparse Channel Estimation for MIMO-OFDM Systems in High-Mobility Situations,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6113–6124, 2018, doi: 10.1109/TVT.2018.2811368. DOI: https://doi.org/10.1109/TVT.2018.2811368

S. Kim, “Improved MUSIC algorithm for the code-timing estimation of DS-CDMA multipath-fading channels in multiantenna systems,” IEEE Trans. Veh. Technol., vol. 53, no. 5, pp. 1354–1369, 2004, doi: 10.1109/TVT.2004.832414. DOI: https://doi.org/10.1109/TVT.2004.832414

Y. Chen, Y. Wang, J. Zhang, and M. Di Renzo, “QoS-Driven Spectrum Sharing for Reconfigurable Intelligent Surfaces (RISs) Aided Vehicular Networks,” IEEE Trans. Wirel. Commun., vol. 20, no. 9, pp. 5969–5985, 2021, doi: 10.1109/TWC.2021.3071332. DOI: https://doi.org/10.1109/TWC.2021.3071332

Q. Zhao, A. Tang, and X. Wang, “Reference Signal Design and Power Optimization for Energy-Efficient 5G V2X Integrated Sensing and Communications,” IEEE Trans. Green Commun. Netw., vol. 7, no. 1, pp. 379–392, 2023, doi: 10.1109/TGCN.2023.3234392. DOI: https://doi.org/10.1109/TGCN.2023.3234392

S. Yun, J.-M. Kang, I.-M. Kim, and J. Ha, “Deep Artificial Noise: Deep Learning-Based Precoding Optimization for Artificial Noise Scheme,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3465–3469, 2020, doi: 10.1109/TVT.2020.2965959 DOI: https://doi.org/10.1109/TVT.2020.2965959

F. Granda, L. Azpilicueta, M. Celaya-Echarri, P. Lopez-Iturri, C. Vargas-Rosales, and F. Falcone, “Spatial V2X Traffic Density Channel Characterization for Urban Environments,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 5, pp. 2761–2774, 2021, doi: 10.1109/TITS.2020.2974692. DOI: https://doi.org/10.1109/TITS.2020.2974692




How to Cite

Bandewar, S., & Chaudhary, V. S. (2023). A Study on Enhancing Channel Estimation in Vehicular Communications: Metamaterial-Enhanced Microstrip Antennas. SMART MOVES JOURNAL IJOSCIENCE, 9(9), 1–4. https://doi.org/10.24113/ijoscience.v9i9.510