Analytical Study of Task Offloading Techniques using Deep Learning

Authors

  • Mr Almelu
  • Dr. S. Veenadhari
  • Kamini Maheshwar

DOI:

https://doi.org/10.24113/ijoscience.v7i7.393

Keywords:

Internet of Things (IoT), Bandwidth, Task Offloading, Deep Learning.

Abstract

The Internet of Things (IoT) systems create a large amount of sensing information. The consistency of this information is an essential problem for ensuring the quality of IoT services. The IoT data, however, generally suffers due to a variety of factors such as collisions, unstable network communication, noise, manual system closure, incomplete values and equipment failure. Due to excessive latency, bandwidth limitations, and high communication costs, transferring all IoT data to the cloud to solve the missing data problem may have a detrimental impact on network performance and service quality. As a result, the issue of missing information should be addressed as soon as feasible by offloading duties like data prediction or estimations closer to the source. As a result, the issue of incomplete information must be addressed as soon as feasible by offloading duties such as predictions or assessment to the network’s edge devices. In this work, we show how deep learning may be used to offload tasks in IoT applications.

Downloads

Download data is not yet available.

Author Biographies

Mr Almelu

PhD Scholar

Computer Science & Engineering

Rabindranath Tagore University

Bhopal, India

Dr. S. Veenadhari

Associate Professor

Computer Science & Engineering

Rabindranath Tagore University

Bhopal, India

 

Kamini Maheshwar

PhD Scholar

Computer Science & Engineering

Rabindranath Tagore University

Bhopal, Madhya Pradesh, India

 

References

Huaming Wu, Member, IEEE, Ziru Zhang, Chang Guan, Katinka Wolter, and Minxian Xu, " Collaborate Edge and Cloud Computing with Distributed Deep Learning for Smart City” in IEEE Internet of Things Journal, 2020.

Yi Liu, Shengli Xie, Fellow, IEEE, and Yan Zhang, Fellow, IEEE Transactions on Vehicular Technology" Cooperative Offloading and Resource Management for UAV-Enabled Mobile Edge Computing in Power IoT System” IEEE Transactions on Vehicular Technology, August 18,2020

?Brahim and Suat O¨ zdemir “DeepMDP: A Novel Deep Learning Based Missing Data Prediction Protocol for IoT”, IEEE Internet of Things Journal, 2020.

Chandan Pradhan, Student Member, IEEE, Ang Li, Member, IEEE et al" Computation Offloading for IoT in C-RAN Optimization and Deep Learning", IEEE Transactions on Communications, June 02, 2020.

Nan Cheng, Member, IEEE, Feng Lyu, Member et al, “Space/Aerial-Assisted Computing Offloading for IoT Applications: A Learning-based Approach”, in IEEE journal, 2020.

Xiaolan Liu, Zhijin Qin al et," Resource Allocation for Edge Computing in IoT Networks via Reinforcement Learning," in IEEE, 2019.

Yutong Xie Zhengzhuo Xu al et. “Backscatter-Assisted Computation Offloading for Energy Harvesting IoT Devices via Policy-base Deep Reinforcement Learning”, IEEE/CIC International Conference on Communications Workshops in China, 2019 .

Jienan Chen, Member Siyu Chen al et, “iRAF: a Deep Reinforcement Learning Approach for Collaborative Mobile Edge Computing IoT Networks,” IEEE INTERNET OF THINGS JOURNAL, MONTH 2019.

Hongyu Zhao, Ying Wang al et. “Task Proactive Caching Based Computation Offloading and Resource Allocation in Mobile-Edge Computing Systems”, in IEEE, 2018.

Minghui Min,Liang Xiao al et, “Learning-based Computation Offloading for IoT Devices with Energy Harvesting”, IEEE Transactions on Vehicular Technologyon, 2018.

Xiaochen Fan, Xiangjian He al et, “CTOM: Collaborative Task Offloading Mechanism for Mobile Cloudlet Networks” IEEE. 2018.

Downloads

Published

07/01/2021

How to Cite

Almelu, M., Veenadhari, D. S. ., & Maheshwar, K. . (2021). Analytical Study of Task Offloading Techniques using Deep Learning . SMART MOVES JOURNAL IJOSCIENCE, 7(7), 1–4. https://doi.org/10.24113/ijoscience.v7i7.393

Issue

Section

Articles