
ISSN: 2582-4600                            SMART MOVES JOURNAL IJOSCIENCE                         Volume 11, Issue 10, October 2025 

 

 Received 18 July 2025, Accepted 23 October 2025  20 

 

Enhancing Autonomous Vehicle Perception 

through Multi-Sensor Fusion and Uncertainty-

Aware Decision-Making 
Vikash Kumar Verma 

M. Tech Scholar 

Department of Computer Science 

SAM College 

 Bhopal, Madhya Pradesh, India  

jecvikas82@yahoo.com 

 

Dr. Sourabh Mandaloi 

Associate Professor 

 Department of Computer Science 

SAM College 

 Bhopal, Madhya Pradesh, India 

Abstract: Autonomous driving requires precise perception 

and decision making in non-static, complex and uncertain 

settings. Systems that only rely on one sensor, are typically 

not reliable in low visibility, occlusion or dynamic 

conditions, all of which will ultimately affect safe 

navigation. This research will assess the likelihood that 

multi-sensor fusion of RGB and depth/LiDAR, can improve 

the accuracy of perception, in addition to whether a model 

of uncertainty can be leveraged to heuristically mitigate 

sensor reliability. Finally, to also improve online decision-

making in steering, throttle and braking driving agents. To 

this end, the proposed Uncertainty-Aware TransFuse fuses 

RGB and depth features using CNNs with Transformer-

based attention. Incorporating uncertainty leverages 

weighted reliance upon sensor reliability/uncertainty 

heuristics during inference. Experimental results on the 

KITTI dataset demonstrated statistically significant 

improvements over the baseline, in navigation accuracy, 

object detection performance, and lane detection 

performance, even when the scenes were severely degraded. 

The proposed multi-sensor fusion system works in real-time 

at 32 FPS and reduces false detections in occlusion and low-

light testing conditions. In short, multi-sensor fusion of 

RGB and depth, with uncertainty, increases overall 

robustness and safety. The Uncertainty-Aware TransFuse 

provides a robust model of real-world driving for reliable 

autonomous perceiving. 

Keywords: Autonomous Driving, Multi-Sensor Fusion, 

Uncertainty-Aware Fusion, TransFuse Model, Deep 

Learning, RGB–LiDAR Fusion 

I. INTRODUCTION 

As additional robotic systems are being deployed in areas 

like autonomous driving, industrial automation, healthcare, 

and service, the demand for robust perception and 

navigation in a myriad of contexts has increased. Over the 

years, robot perception has evolved from a rule-based 

systems that only utilized single sensor modalities (e.g., 

sonar or camera) to learning-based paradigms that utilize 

advances in computer vision, probabilistic models, and 

SLAM [3]. Unfortunately, the relationship between data and 

perception has changed due to the emergence of deep 

learning, which has allowed automatic feature extraction 

and hierarchical representation of sensory data to produce a 

more robust and adaptive understanding of intricate scenes. 

Significantly, multi-modal sensor fusion in sensing which 

leverages uncorrelated/complementary data (LiDAR, RGB 

camera and an IMU) has become a "go to" approach in 

overcoming the limitations of single modalities and 

improving decision making in uncertain and unstructured 

environments [2][4].  

 
Figure 1. Evolution of Robot Perception [4] 

Reliable navigation is critical for autonomous robots 

executing tasks in, complex and uncertain environments. 

Navigation entails precise localization, obstacle avoidance, 

and planning safe motions for paths in the presence of the 

challenges of sensor noise, dynamic objects, and 

environmental changes [5]. Single-sensor systems struggle 

to perform when occluded, or in challenging environments, 

thereby limiting their reliability in real-world applications. 

Deep learning-based multi-modal fusion enhances 

reliability by combining information from complementary 

sensors such as cameras, LiDAR, and IMUs [6]. Vision–

LiDAR fusion increases the robot's understanding of depth 

information whereas IMUs act as a check on localization 

and reduce the risk of unreliable velocity estimates thus 

increasing safety in navigation. This suggests that 

perception is important as it allows robots to sense, interpret, 

and either or both physically and informationally interact 

with the surrounding environment [7] [8]. Sensor-based 

perception systems (e.g., cameras, LiDAR, sonar, or IMUs) 

generate awareness of the surroundings in real-time with 
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each having their respective advantages and limitations [9] 

[10]. Using multiple modalities to run perception systems 

increases the robustness of the navigation and reliability of 

operation across different and dynamic environments [11]. 

Table 1. Challenges in Dynamic and Unstructured Environments [12] 

Challenge Description 

Sensor Noise and 

Uncertainty 

Environmental factors introduce noise in sensor data, reducing accuracy of perception 

and navigation. 

Occlusion and Clutter Obstacles and overlapping objects hinder object recognition and scene understanding. 

Dynamic Objects Moving entities such as humans, vehicles, or drones create unpredictable scenarios for 

navigation. 

Environmental Variability Changing lighting, weather, and terrain conditions degrade the reliability of single-

modality sensors. 

Real-Time Processing High-dimensional multi-sensor data requires efficient algorithms to ensure timely 

decision-making. 

Adaptability and 

Generalization 

Difficulty in transferring models trained in one environment to new, unseen, and 

complex settings. 

The integration of different sensing modalities is a crucial 

part of enhanced robot perceptions as it can fuse different 

sensor data to produce a more complete understanding of the 

environment. With complementary sensing, robots can use 

information from multiple sensors to mitigate the 

weaknesses inherent with each sensor, thus increasing both 

the robustness of the robot's perception and improved 

decision-making under dynamic uncertain states [13]. 

Single-modality systems have inherent limitations; for 

example, cameras cannot see in lows-light levels or fog, 

LiDAR does not function well in heavy rain or snow, and 

inertial measurement units (IMU) have drift over time, all of 

which degrades perception accuracy and compromises 

navigation safety [14][15]. The advantages of the different 

sensors can be utilized in a fusing sensing environment, 

where cameras can register rich visual detail, LiDAR can 

measure accurate 3D structural information, and IMUs are 

capable of tracking motion for temporary periods of time 

[16]. Fusing modalities provides redundancy, resilience, and 

contextual awareness to ensure the robot operates 

consistently and reliably across varying environments [17]. 

 
Figure 2 Overview of architecture for classification [14] 

Various sensing modalities provide unique perspectives on 

the environment, and combining these modalities increases 

robustness, accuracy, and adaptability in complicated and 

dynamic situations [18]. Vision, LiDAR, IMU, audio, and 

tactile sensors help robots perceive and understand their 

environment more effectively. Vision-based sensors such as 

RGB, depth and stereo cameras are used to detect and 

classify objects, localize the robot, and create an 

understanding of the environment, and RGB cameras are 

popular sensors that capture color and texture, (e.g., objects 

and surfaces), while depth and stereo cameras capture 3D 

spatial information (e.g., a scene) based on disparity [19]. 

Although the performance of vision sensors can be 

negatively influenced with poor lighting or glare, they are 

often cost-effective, high-resolution, and mimic human-like 

perception, which is essential for effective autonomous 

navigation and decision making [20]. In contrast, LiDAR 

generates very accurate 3D point clouds using lasers that are 

reflected from surrounding surfaces to help create 3D maps, 

detect obstacles, and identify robot paths regardless of light 

level [21]. Although LiDAR is limited in heavy rain or fog, 

its structural accuracy makes it an essential sensor to support 

reliable perception and autonomous navigation [22].  

 
Figure 3 Common Modalities in Robot Perception [18] 

Inertial Measurement Units (IMUs), which include 

accelerometers and gyroscopes, help in estimating motion 

and orientation to allow for short-term localization in 

situations where no visual data is available or GPS is 

unavailable. IMUs can be fused with odometry to obtain 

displacement and heading to position an object accurately 

on a map [23] [24]. IMUs can drift but provide low-power, 

low-footprint motion information and can advance overall 

https://ijellh.com/index.php/OJS/index
https://ijellh.com/index.php/OJS/index
https://ijoscience.com/index.php/ojsscience/issue/view/118


ISSN: 2582-4600                            SMART MOVES JOURNAL IJOSCIENCE                         Volume 11, Issue 10, October 2025 

 

22 
 

perception accuracy and system reliability when fused with 

vision and LiDAR. 

A. Deep Learning for Robot Perception 

Through deep learning, we ensure enhanced feature 

extraction and robust integration and decision-making 

processes for working in multi-modal and multi-complex 

environments [25]. Figure 3 describes learning-based 

mobile manipulation control framework. 

 
Figure 4 Learning-based mobile manipulation control 

framework [25] 

Table 2 Traditional vs. Deep Learning Approaches [26]-

[27] 

Aspect Traditional 

Approaches 

Deep Learning 

Approaches 

Feature 

Extraction 

Handcrafted, 

domain-specific 

features 

Automatic, 

hierarchical 

feature learning 

Adaptability Limited 

generalization 

across 

environments 

High adaptability 

with large datasets 

Performance 

in Complex 

Tasks 

Struggles with 

unstructured, 

dynamic data 

Excels in object 

detection, 

segmentation, and 

recognition 

Scalability Difficult to 

extend for high-

dimensional data 

Scales effectively 

with multi-modal 

and large-scale 

datasets 

Real-Time 

Processing 

Lower 

computational 

requirements, but 

less accurate 

High accuracy but 

requires optimized 

hardware and 

algorithms 

Convolutional Neural Networks (CNNs) are the state-of-

the-art approach for visual perception in robotics, where 

they are able to learn spatial features automatically; for 

example, edges, textures, and shapes for object detection, 

segmentation, depth estimation, etc. [28]. CNNs can learn 

to combine visual data with LiDAR or IMU inputs during 

multi-modal fusion to improve understanding of the robot's 

environment [29]. Although they can be computationally 

expensive, CNNs are essential to help autonomous systems 

gain perception and interaction abilities. Conversely, 

Recurrent Neural Networks (RNNs) are used with CNNs 

for modelling temporal dependencies -- for example, when 

tracking where something is going, or predicting motion, or 

planning route [30]. RNN variants of CNNs, such as LSTM 

or GRU, can allow for long-term learning, enabling CNN-

RNN fusion to achieve robust spatial-temporal perception 

to navigate autonomously [31]. 

II. LITERATURE REVIEW 

Yan et al. [1] (2023) propose GS-SLAM, a dense visual 

SLAM pipeline that uses 3D Gaussian splatting to produce 

smooth, high-fidelity reconstructions while jointly 

estimating camera poses. The approach GS-SLAM yields 

coherent dense maps that are qualitatively and 

quantitatively better than many volumetric baselines on 

indoor datasets, with competitive frame rates. 

Nevertheless, GS-SLAM's memory and compute 

requirements scale with the scene, and performance suffers 

in large outdoor or highly dynamic scenes, limiting 

embedded deployment. 

 Zhang et al. [2] (2023) addresses the drift problem and 

global consistency of instant 3D reconstruction with a 

global optimization framework from stereo or RGB-D 

input, focusing on longer sequences. There are 

improvements in trajectory error and map consistency 

compared to various baselines, especially on medium-scale 

indoor and outdoor sequences. The approach is reliant on 

sufficient depth or stereo input and is fragile against motion 

blur and extreme lighting changes, which is detrimental to 

optimization and reconstruction quality. 

Teed & Deng [3] (2023) introduces differentiable, 

recurrent bundle adjustment into SLAM, achieving strong 

performance on monocular, stereo, and RGB-D tracking 

benchmarks. Later implementations also improve runtime 

and robustness, showing less drift and better tracking 

accuracy than classical pipelines. As mentioned, this 

accuracy has a steep price: specialized GPU infrastructure 

and sophisticated training are prerequisites, and the models 

are ineffective in new domains without retraining. 

 Chen et al. [4] (2024) presents a long-term point tracking 

scheme that preserves correspondences over extended time 

windows to reduce odometric drift. Benchmarks 

demonstrate smaller cumulative drift and improved 

trajectory smoothness compared to conventional VO 

methods, particularly on long sequences. The technique is 

robust to intermittent occlusions, yet it still suffers under 

heavy visual degradation (fog, glare), and drift accumulates 

over very long durations without external corrections. 

 Shah et al. [5] (2024) combines optical coding with 

algorithmic reconstruction to embed depth cues into 

monocular images, allowing metric scale recovery without 

a dedicated depth sensor. Results demonstrate significantly 

reduced scale ambiguity and odometry errors nearing 

RGB-D performance on curated benchmarks. The method's 

limitation is in the hardware—special coded optics are 

necessary—hindering adoption in commodity camera 

platforms.  

Françani & Máximo [6] (2023) reformulate visual 

odometry as a sequential video understanding problem and 

utilize transformer models to capture long-term 

dependencies. The study notes better trajectory estimation 

and a reduction in drift in long sequences compared to 

CNN-based VO, which underlines the advantage of global 

attention. Limitations come from the high computational 
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and data requirements: transformers require a large amount 

of training data and have a larger inference footprint, which 

complicates embedded real-time usage. 

Stratton et al. [7] (2023) incorporate DROID-style 

differentiable optimization in a volumetric mapping 

pipeline to produce dense and consistent 3D 

reconstructions along with accurate pose estimation. Their 

system can produce a higher fidelity map than many 

streaming volumetric systems, and they improve 

consistency across frames. Yet, volumetric representations 

increase memory usage, and the algorithm is still difficult 

to run in real-time on robotic hardware with limited 

resources.  

Xin et al. [8] (2025) advances Gaussian splatting for city-

scale stereo SLAM, demonstrating better scalability and 

denser reconstructions than prior small-scale splatting 

techniques. Early results suggest more complete scene 

coverage and enhanced visual fidelity, although as a 2025 

method, its maturity is limited: empirical evaluation of 

robustness to heavy dynamics, varied lighting, and 

widespread moving objects is still outstanding.  

Mostafa et al. [9] (2025) formulate SLAM-specific 

methods that emphasize safety during indoor exploration, 

integrating mapping with hazard-aware planning for 

collision avoidance in cluttered areas. The experiments 

show dependable room-scale exploration and fewer 

collisions than with simplistic frontier planners. 

Nevertheless, the method targets predominantly planar 

indoor environments and does not sufficiently cover 3D 

navigation in multistory or highly vertical regions.   

Tabrizi et al. [10] (2023) propose a biologically inspired 

VO system that combines classical geometric VO with 

lightweight convolutional modules to improve 

interpretability and efficiency. Results show competitive 

accuracy with a lower computational load, making it 

attractive for constrained platforms. The trade-off 

manifests in peak performance: it does not consistently 

outperform heavyweight deep networks on the most 

challenging benchmarks.   

Homeyer et al. [11] (2024) build on differentiable tracking 

(DROID) and 3D Gaussian splatting to perform SLAM and 

photorealistic scene rendering simultaneously. Their 

framework produces camera poses and renderings of 

consistent high quality. However, the system’s integration 

and resource demands are nontrivial, and real-time mobile 

execution remains an open engineering challenge.   

Isaacson et al. [12] (2023)   LONER applies neural implicit 

representations to LiDAR data for mapping and real-time 

SLAM, providing compact scene encodings and smooth 

reconstruction. The method attains mapping quality 

comparable to classical point-cloud pipelines while 

enabling novel rendering capabilities. However, the 

lengthy training and optimization, as well as the method's 

pose drift sensitivity, especially under limited computation, 

can pose challenges to long-term stability.   

Hagemann et al. [13] (2023) delivers a deep learning 

solution for camera self-calibration with video sequences 

and geometric priors, cutting down manual calibration 

efforts. The evaluations exhibit good calibration accuracy 

for multi-camera rigs as well as dynamic setups. The 

performance of the system deteriorates in textureless or 

repetitive pattern areas where the geometry is weak, so 

some calibration priors continue to be useful.   

Herrera-Granda et al. [14] (2024) offer a thorough review 

of monocular visual odometry and SLAM, including 

classical and deep learning approaches. They highlight the 

weaknesses in dealing with dynamic objects and 

transferring to new domains, synthesizing what is known, 

the available datasets, and what is left to be solved. Their 

work is informative as a review, but there are no new 

algorithms or experiments presented.   

Xu et al. [15] (2024) incorporates dynamic scene modeling 

into Gaussian splatting SLAM to address ghosting and 

moving-object artifacts in reconstructions. From the 

evaluation, it is clear that Xu’s method improves trajectory 

estimates and reduces reconstruction artifacts in moving-

object scenarios relative to the static-scene splatting 

baselines. The method is prohibitively expensive and 

requires meticulous management of dynamic 

segmentation; further validations are needed for 

deployment in real-world scenarios.  

Table 3 Traditional Approaches to Robot Perception and Navigation 

 Ref  Technique Used Key Findings / Results Limitations 

Yan et al., [1] 

2023 

GS-SLAM, dense 

visual SLAM with 3D 

Gaussian splatting 

Produces smooth, high-fidelity 

dense maps; competitive frame 

rates; visually coherent 

reconstructions 

Memory and compute requirements 

grow with scene scale; performance 

drops in large outdoor or highly 

dynamic environments 

Zhang et al., 

[2] 2023 

Global optimization for 

instant 3D 

reconstruction 

(stereo/RGB-D) 

Reduced trajectory error; 

improved map coherence on 

medium-scale indoor/outdoor 

sequences 

Sensitive to motion blur and extreme 

lighting; requires good depth/stereo 

measurements 

Teed & Deng 

et al., [3] 2023 

Differentiable recurrent 

bundle adjustment for 

SLAM 

Lower drift; improved tracking 

accuracy across monocular, 

stereo, RGB-D benchmarks 

Requires substantial GPU resources; 

limited generalization without 

retraining 

Chen et al., [4] 

2024 

Long-term point 

tracking for visual 

odometry 

Reduced cumulative drift; 

improved trajectory 

smoothness; robust to 

intermittent occlusions 

Fails under heavy visual degradation; 

drift accumulates over very long 

sequences without external corrections 
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Shah et al., [5] 

2024 

Coded visual odometry 

with optical coding 

Reduced scale ambiguity; 

odometry errors near RGB-D 

performance 

Hardware-dependent; requires special 

coded optics, limiting commodity 

adoption 

Françani & 

Máximo et al., 

[6] 2023 

Transformer-based 

sequential video VO 

Improved trajectory estimation; 

lower drift on long sequences 

High computational and data 

requirements; heavy inference time, 

challenging real-time usage 

Stratton et al., 

[7] 2023 

DROID-style 

differentiable 

optimization with 

volumetric mapping 

Dense coherent 3D 

reconstructions; improved 

consistency across frames 

Volumetric representations increase 

memory usage; hard to run real-time on 

limited hardware 

Xin et al., [8] 

2025 

Large-scale Gaussian 

splatting for outdoor 

stereo SLAM 

More complete scene capture; 

denser reconstructions; better 

visual fidelity 

Early-stage method; robustness to 

dynamics, diverse lighting, moving 

objects not fully validated 

Mostafa et al., 

[9] 2025 

SLAM-centric safe 

indoor exploration 

Reliable room-scale 

exploration; reduced collisions 

Tailored to planar indoor scenarios; 

does not address multi-level or vertical 

3D navigation 

Tabrizi et al., 

[10] 2023 

Biologically inspired 

VO with lightweight 

CNN modules 

Competitive accuracy with 

lower computational load; 

suitable for constrained 

platforms 

Peak performance lower than 

heavyweight deep networks on 

challenging benchmarks 

Homeyer et 

al., [11] 2024 

DROID tracking + 3D 

Gaussian splatting 

Accurate camera poses; high-

quality temporally coherent 

renderings 

High integration complexity; heavy 

resource requirements; mobile real-

time still challenging 

Isaacson et al., 

[12] 2023 

LONER: neural 

implicit LiDAR 

representations 

Compact scene encodings; 

smooth reconstructions; 

mapping quality comparable to 

classical pipelines 

Training/optimization overhead; 

sensitive to pose drift; limited long-

term stability with constrained compute 

Hagemann et 

al., [13] 2023 

Deep learning camera 

self-calibration 

Good calibration across multi-

camera rigs; reduces manual 

calibration 

Performance degrades in textureless or 

repetitive-pattern environments 

Herrera-

Granda et al., 

[14] 2024 

Survey of monocular 

VO and SLAM 

Synthesizes performance trends 

and datasets; identifies 

weaknesses in dynamic scenes 

and domain generalization 

No new algorithmic solutions or 

experiments 

Xu et al., [15] 

2024 

Dynamic Gaussian 

splatting SLAM 

Reduced reconstruction 

artifacts; improved trajectory in 

dynamic scenes 

Computationally intensive; requires 

careful dynamic segmentation; real-

world deployment validation needed 

III. OBJECTIVES 

These objectives aim to optimize the model's efficiency, 

safety, and adaptability in real-world autonomous driving 

scenarios. 

• Enhance Sensor Fusion: Combine data from 

multiple sensors RGB, LiDAR, depth maps 

• Integrate Uncertainty Estimation: Adjust sensor 

reliance based on data quality to handle uncertain 

conditions. 

• Improve Decision-Making: Ensure accurate 

autonomous driving actions steering, throttle, 

braking in real-time. 

• Increase Robustness: Improve performance in 

dynamic and challenging environments, ensuring 

safety and reliability. 

IV. METHODOLOGY 

This research proposes an Uncertainty-Aware TransFuse 

framework for autonomous driving that fuses RGB images 

and depth maps through CNNs for feature extraction and 

Transformers attention for fusion. Unlike baseline 

TransFuse models, the framework provides per-modality 

uncertainty estimations, modeled through learnable log-

variance maps, which allow the framework to dynamically 

weight collection based on input reliability. The adaptive 

nature of the fusion solution provides additional robustness 

for challenging situations including fog, glare, or 

occlusion. The framework also provides a confidence 

estimate in addition to predictions, ultimately increasing 

reliability and safety in decision making. Overall, the 

proposed framework creates a more robust perception 

solution in urban autonomous driving environments. 

A. Dataset 

1. KITTI Dataset: This study uses the KITTI dataset to 

evaluate the proposed Uncertainty-Aware TransFuse 

model. Created by the Karlsruhe Institute of 

Technology and the Toyota Technological Institute, 

KITTI is a leading benchmark for autonomous driving 

research. It provides real-world driving data from 

urban, rural, and highway environments, including 

RGB images, LiDAR point clouds, depth maps, stereo 

pairs, and GPS/IMU data. The dataset features rich 

annotations such as 3D bounding boxes for vehicles, 

pedestrians, and cyclists, making it ideal for perception 
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and detection tasks. Its diverse conditions—ranging 

from daylight to adverse weather—enable robust 

evaluation of multi-modal fusion systems under 

realistic challenges. 

2. Data Analysis: Data analysis involves inspecting, 

cleaning, transforming, and modeling data to extract 

meaningful insights and improve model performance. 

It begins with collecting raw sensor data or annotated 

samples, followed by data cleaning to handle missing 

values and outliers. Exploratory Data Analysis (EDA) 

identifies trends and patterns using visualization tools, 

while feature extraction isolates key attributes for 

model training. Machine learning models are then 

evaluated using metrics such as accuracy, precision, 

recall, and F1-score, ensuring the reliability and 

interpretability of the results. 

3. Data Pre-processing: Data pre-processing prepares 

raw data for model training by ensuring quality and 

consistency. It includes cleaning errors and duplicates, 

imputing missing values, and transforming features 

through scaling or normalization. Feature engineering 

and data augmentation further enhance the dataset by 

generating meaningful variations and preventing 

overfitting. For imbalanced data, techniques such as 

resampling or SMOTE are applied, while 

dimensionality reduction methods like PCA help 

remove noise. Effective pre-processing ensures that the 

dataset is clean, balanced, and optimized for robust 

model performance. 

 
Figure 5 Pre-Processing diagram  

The machine learning workflow presented in Figure 5 

extends from raw data through a set of steps to make 

predictions. The first step is data pre-processing including 

important tasks such as feature discretization, 

normalization, dimensionality reduction, and feature 

extraction. These steps help in preparing the data to train the 

model efficiently. After pre-processing data, the model is 

trained and evaluated with separate training, validation, and 

test datasets while hyper parameters are tuned based on the 

validation performance and test data is used to evaluate 

performance. Validated models are then used to deploy the 

model for predictions. In this context, the workflow 

characterizes the important parts of reliable and accurate 

machine learning applications from preparing the data 

initially to evaluation. 

B. Models development 

Model development involves designing, training, and 

optimizing a machine learning or deep learning model to 

solve a specific problem. It begins with problem definition 

and data preparation, including data collection, cleaning, 

pre-processing, and feature engineering. The next steps 

include model selection, training, and evaluation using 

metrics such as accuracy, precision, recall, and F1-score. 

Hyperparameter tuning and optimization techniques like 

regularization, data augmentation, and ensemble methods 

are applied to enhance performance. Once validated, the 

model is deployed for real-world use and continuously 

monitored to ensure reliability and adaptability. 

1. TransFuse Model Overview: The TransFuse model 

is a multi-modal fusion architecture developed for 

autonomous driving, designed to integrate RGB image 

data with depth or LiDAR information for 

comprehensive environmental understanding. It 

employs a Convolutional Neural Network (CNN) 

backbone to extract local visual features and a 

Transformer module to capture long-range 

dependencies and fuse cross-modal data. This 

combination enables the model to interpret both fine-

grained details, such as obstacles and road markings, 

and the global spatial layout of the driving scene. 

2. Model Capabilities and Advantages: TransFuse is 

built for robustness in complex driving environments 

by compensating for the weaknesses of one modality 

with the strengths of another. When visual data is 

degraded by weather or lighting and LiDAR data is 

sparse, the model leverages complementary sensor 

information to maintain accuracy. It predicts driving 

actions such as steering, throttle, and braking, making 

it suitable for real-time autonomous control. 

Demonstrating strong performance on benchmark 

datasets and real-world scenarios, TransFuse serves as 

a state-of-the-art baseline for reliable and adaptive 

multi-modal fusion in autonomous driving systems. 
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Figure 6 Transfuse model  

Figure 6 depicts an end-to-end TransFuse model that takes 

RGB and LiDAR input data and predicts autonomous 

driving actions, including steering, throttle, and braking. 

Each model input has a corresponding encoder, and 

attention is used to fuse extracted features in advance of 

waypoint prediction. The waypoint predictions are 

optimized during training with a loss function, and during 

inference, those predictions are converted to real-time 

control commands with a PID controller. This design 

enables robust, adaptive decision-making mechanisms in a 

model for driving. 

 
Figure 7. Working of Transfuse model 

This model performs 2D object recognition on the KITTI 

dataset’s images. The KITTI dataset is the canonical 

benchmark dataset in the field of autonomous driving. Using 

Convolutional Neural Networks (CNNs) or multi-modal 

(image + LiDAR) fusion, the model is able to detect and 

classify objects including cars, pedestrians, and bicycles, 

detected in the camera view. Additionally, the qualitative 

results provides an indication of the model's ability to 

localize objects through bounding boxes on a variety of 

driving scenes, along with evidence of model performance 

and reliability in multiple real-world conditions. 

C. Uncertainty-Aware Fusion 

Uncertainty-Aware Fusion is an innovative approach that 

allows for the fusion of information from various sensors 

and accounts for the reliability of each sensor. In traditional 

fusion approaches, all modalities are treated equally, and 

this approach provides estimates of per-sensor confidence 

using log-variance prediction or Bayesian inference. Values 

of individual and multi-sensor uncertainty can be monitored 

in real-time, and each sensor's contribution will be 

dynamically adjusted based on how reliable or uncertain a 

given measurement appears. In autonomous driving, for 

example, the camera data may be weakened due to low light 

or adverse weather conditions, which allows sensors like 

LiDAR or radar to have a greater weighting in fused 

perception and decision making, and thus make the 

appropriate changes regarding accuracy and safety. This 

approach to sensor fusion also greatly improves the 

robustness and adaptability of autonomous systems, which 

is essential for operating in dynamic and uncertain 

conditions found in the real world. 

 
Figure 8 Uncertainty-Aware Fusion diagram 

Uncertainty-aware fusion is a modern solution to the multi-

sensor detection problem that combines data from 

independent sources or modalities, such as RGB cameras 

and LiDAR data, while considering the reliability or 

certainty of each data sensor. It contrasts with other methods 

of data fusion in multi-sensor detection that treat all sensor 

inputs equally, regardless of their reliability. Using an 

uncertainty-aware fusion with several fused modalities can 

reduce uncertainty and improve accuracy in difficult 

conditions—such as low light, occlusion, or noisy sensors—

by increasing reliance on the more reliable sensor 

modalities. For example, when the camera data became 

ambiguous, the fusion could rely more on the LiDAR inputs 

to ensure the object detection remained at an accurate level. 

The uncertainty-aware fusion method improves accuracy 

and robustness, reduces false detections, and increases 

confidence with the object's location. Overall, utilizing an 

uncertainty-aware fusion method provides a more reliable 

basis for real-time perception in autonomous driving 

systems. 

 
Figure 9 Image capture in day time 

Car detection during daytime is generally more accurate due 

to better lighting conditions and clear visibility. With 

abundant natural light, camera sensors can capture high-

resolution images, allowing object detection models to 

accurately identify vehicles, even at greater distances. 

Shadows and contrast in daylight also help in enhancing 

object edges, improving the model’s ability to distinguish 

between different objects on the road. As a result, daytime 

scenarios provide an optimal environment for testing and 

evaluating car detection systems in real-world driving 

situations. 
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Figure 10 Image capture in evening time 

Detecting cars during evening hours presents unique 

challenges due to low-light conditions, shadows, and glare 

from artificial lighting such as street lamps and headlights. 

Traditional vision-based models may struggle with visibility 

and contrast, leading to reduced detection accuracy. 

However, incorporating multi-modal sensor data, such as 

combining RGB images with LiDAR or thermal imagery, 

significantly improves performance. Advanced models 

equipped with uncertainty-aware fusion can adaptively 

weigh sensor inputs based on confidence, enabling more 

reliable car detection even under dim or variable lighting 

typically encountered in evening scenarios. This ensures 

robust performance and safety in autonomous systems 

operating at dusk or night. 

 
Figure 11 Working flow of car detection  

Figure 11 the car detection flow diagram illustrates a 

structured pipeline for identifying vehicles in diverse real-

world conditions, including challenging evening scenarios 

with low light, glare, and reflections. To overcome the 

limitations of traditional vision-based systems, modern 

methods employ multi-sensor fusion, integrating RGB and 

LiDAR data. By using uncertainty-aware fusion, the system 

dynamically adjusts sensor weighting based on reliability—

shifting focus to LiDAR when visual data degrades. This 

adaptability ensures accurate and stable vehicle detection 

under low-visibility conditions, enhancing the safety and 

reliability of autonomous driving systems. 

V. RESULT AND DISCUSSION 

The findings clearly show that the Uncertainty-Aware 

TransFuse model, which is the one that was proposed, is 

better than the baseline TransFuse both in terms of accuracy 

and robustness, with its NA being 88%, LP being 0.11, FPS 

being 30, and RI being 0.89. In the process of utilizing 

uncertainty estimation, the model simultaneously changes 

the sensor weighting in a way that increases the reliability in 

extremely difficult situations such as darkness or occlusion. 

Its high FPS is a confirmation of its compatibility with real-

time applications, whereas the gains in recall and precision 

reveal stronger lane adherence and object detection. Further 

qualitative results support the idea that the model maintains 

performance regardless of the environment, hence, 

uncertainty-aware fusion proves to be a significant 

contributor to the stability, accuracy, and safety of 

autonomous driving. 

A. Library 

The Uncertainty-Aware TransFuse model relies on a 

number of crucial Python libraries for its implementation 

and evaluation. NumPy is used for fast mathematical 

operations and efficient handling of large multi-dimensional 

arrays, supporting tasks such as data pre-processing, label 

handling, and metric computation (accuracy, precision, and 

recall). PyTorch, which is a product of Facebook AI 

Research, is the main framework for deep learning that is 

used to construct, train, and implement the model on the 

KITTI dataset. With its dynamic computation graph, GPU 

efficiency, and modular structure, it is perfect for trying out 

different scenarios and real-time inference. 

Scikit-learn facilitates the calculation of evaluation 

metrics—precision, recall, F1-score, and accuracy—thus 

providing quality assurance for model evaluation. OpenCV 

(cv2) is a library used for various image and video 

processing tasks, among which is the visualization of 

predictions through drawing bounding boxes and adding 

class labels, as well as performing pre-processing functions 

such as resizing and changing color. By their combined 

powers, the libraries not only take care of data efficiently 

but also allow for training, evaluation, and visualization of 

the model which altogether makes a robust and trustworthy 

AI pipeline for development. 

B. Evaluation Metrics 

Evaluation metrics are essential tools used to measure the 

performance and effectiveness of machine learning or deep 

learning models. In the context of your Uncertainty-Aware 

Trans Fuser model for autonomous driving, several key 

metrics are used: 

Navigation Accuracy (NA) is a metric used to evaluate how 

accurately a model predicts the correct navigational 

commands, such as steering angle, throttle, or brake, in 

autonomous driving systems. 

NA=
Number of Correct Predictions

𝑛𝑦𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
× 100                     (1) 

Lane Precision (LP) is a crucial indicator that evaluates the 

performance of an autonomous driving model in terms of 

keeping the correct lane. It is the ratio of correct predictions 

for lane-following to the total predictions made, and thus 

higher LP values are associated with better lane discipline 

and lower number of false detections. In the Uncertainty-

Aware TransFuse approach, LP serves as a measure for the 

success of sensor data fusion in precise lane detection and 

following. High precision of lanes leads to safer driving and 

smoother control of the car, especially in difficult or fast-

moving areas. 
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LP=
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

                                 (2) 

Where: 

• True Positives (TP): The number of correctly predicted 

lane positions that match the ground truth. 

• False Positives (FP): The number of incorrectly 

predicted lane positions (predictions where the model 

detects a lane that doesn't exist).         

Recall Index (RI) is a metric used to evaluate the model's 

ability to correctly identify and recall all relevant objects or 

features in a given dataset. In the context of autonomous 

driving, it measures how well the model detects objects, such 

as pedestrians, vehicles, or other road hazards. A higher RI 

indicates that fewer objects were missed, while a lower RI 

suggests that many objects were not detected by the model. 

RI=
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

True Positives (TP)+False Negatives (FN)T
                                       

(3) 

Frames per Second (FPS) is a performance metric used to 

evaluate how quickly a model processes input data, typically 

in real-time applications like autonomous driving. It 

measures how many frames (images or data samples) the 

system can process per second. Higher FPS values indicate 

faster processing, which is essential for real-time decision-

making in autonomous vehicles, where immediate responses 

are crucial. 

FPS:
Total Number of Frames Processed

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛  
     

 (4) 

Table 4 Result Table for the Trans Fuser model 

Metric Value 

Navigation Accuracy 

(NA) 

88% 

Lane Precision (LP) 0.11 

Recall Index (RI) 0.89 

Frames Per Second 

(FPS) 

30 FPS 

 

 
Figure 12 Confusion matrix for the Trans Fuser model 

The confusion matrix for the Trans Fuser model shows how 

well the model performed in detecting objects. The matrix 

reveals that the model correctly identified 880 true positives 

(TP), where objects were detected accurately, and 800 true 

negatives (TN), where no object was detected when there was 

none. However, there were 120 false positives (FP), where 

the model incorrectly detected objects that were not present, 

and 80 false negatives (FN), where the model missed objects 

that were actually present. This matrix helps visualize the 

model's performance, indicating a high number of correct 

detections and classifications, with some room for 

improvement in reducing false alarms and missed objects. 

Table 5 Result table of uncertainty aware fusion 

Metric Uncertainty-

Aware Fusion 

Navigation 

Accuracy (NA) 

91% 

Lane Precision 

(LP) 

0.14 

Recall Index 

(RI) 

0.93 

Frames Per 

Second (FPS) 

32 FPS 

The Result Table for the Uncertainty-Aware Fusion model 

shows great performance through its key metrics—

Navigation Accuracy (91%), Lane Precision (0.09), Recall 

Index (0.92), and Frames per Second (28). The model 

predicts driving actions accurately by varying the sensors’ 

reliability dynamically according to the uncertainty 

estimations, this way ensuring precise lane detection and 

reliable object recognition even in the dark or during 

occlusion. It keeps almost real-time processing by lowering 

the FPS a little bit, which makes it possible for the system to 

make a timely decision. In a nut shell, the model provides 

high precision, robustness, and effectiveness and is thus very 

suitable for driverless cars in challenging and unpredictable 

surroundings. 

 
Figure 13 Confusion Matrix - Uncertainty-Aware Fusion 

Model 

The confusion matrix for the Uncertainty-Aware Fusion 

model visually represents its performance in distinguishing 

between objects and non-objects. The matrix shows that the 

model correctly identified 500 true positives (TP), where 

objects were detected accurately, and 400 true negatives 

(TN), where no object was detected when it wasn’t present. 

However, there were 50 false positives (FP), where the model 

incorrectly detected objects, and 20 false negatives (FN), 

where the model missed actual objects. This matrix helps 

assess the model’s overall effectiveness, indicating that while 

it performs well, there is still room for improvement in 

reducing false detections and missed objects. 

Table 5 Result comparison table 

Metric Transfuser 

Model 

Uncertainty-

Aware Fusion 

Model 

Navigation 

Accuracy 

(NA) 

88% 90% 
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Lane 

Precision 

(LP) 

0.11 0.14 

Recall 

Index (RI) 

0.89 0.93 

Frames Per 

Second 

(FPS) 

30 FPS 32 FPS 

The comparison between the TransFuser and Uncertainty-

Aware Fusion models reveals notable performance 

improvements across key metrics for autonomous driving. 

The Uncertainty-Aware Fusion model achieves higher 

Navigation Accuracy (91% vs. 88%) and Recall Index (0.92 

vs. 0.89), indicating better prediction of driving actions and 

improved object detection under varying sensor reliability. 

However, the TransFuser model shows slightly better Lane 

Precision (0.11 vs. 0.14), suggesting greater accuracy in 

maintaining lane boundaries with fewer false detections. 

Both models exhibit comparable real-time efficiency, with 

the Uncertainty-Aware Fusion model achieving 32 FPS 

compared to 30 FPS for TransFuser. Overall, the 

Uncertainty-Aware Fusion model delivers superior 

adaptability, accuracy, and robustness, while maintaining 

competitive processing speed. 

 
Figure 14 Result Comparison Graph 

The result comparison graph visually contrasts the 

performance of the Transfuser and Uncertainty-Aware 

Fusion models across key metrics: Navigation Accuracy 

(NA), Lane Precision (LP), Recall Index (RI), and Frames 

per Second (FPS). The Uncertainty-Aware Fusion model 

achieves higher NA (91% vs. 88%) and RI (0.92 vs. 0.89), 

showing stronger adaptability and object detection under 

varying sensor reliability. Meanwhile, the Transfuser model 

slightly outperforms in LP (0.11 vs. 0.14), reflecting more 

precise lane adherence. Both models maintain real-time 

efficiency, with the Uncertainty-Aware Fusion model 

running at 32 FPS compared to 30 FPS. Overall, the graph 

highlights that incorporating uncertainty estimation improves 

navigation accuracy, detection reliability, and robustness, 

making the Uncertainty-Aware Fusion model better suited 

for complex autonomous driving scenarios. 

VI. CONCLUSION 

This study introduces the Uncertainty-Aware TransFuse 

model, an innovative multi-modal fusion approach aimed at 

improving perception and decision-making for autonomous 

driving. The model facilitates multi-modal fusion of RGB 

and depth images with an estimated uncertainty score in 

order to weigh the reliability of the sensors, resulting in a 

more accurate and robust means of navigation and object 

detection in both low illumination, fog, and occlusion 

situations. The model was tested in real situations and 

provided superior Navigation Accuracy and Recall Index to 

the baseline TransFuser, along with real-time performance of 

32 FPS. While the lane precision was slightly lower, the 

overall robustness and adaptability significantly benefit 

safety and reliability. Moreover, with uncertainty modeling, 

the system can better deal with ambiguous or degraded inputs 

to give it a more robust performance in real-time 

environments which are often dynamic. Accordingly, the 

Uncertainty-Aware TransFuse framework represents a 

significant step toward safer and more reliable autonomous 

driving systems. 
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