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Abstract: Autonomous driving requires precise perception
and decision making in non-static, complex and uncertain
settings. Systems that only rely on one sensor, are typically
not reliable in low wvisibility, occlusion or dynamic
conditions, all of which will ultimately affect safe
navigation. This research will assess the likelihood that
multi-sensor fusion of RGB and depth/LiDAR, can improve
the accuracy of perception, in addition to whether a model
of uncertainty can be leveraged to heuristically mitigate
sensor reliability. Finally, to also improve online decision-
making in steering, throttle and braking driving agents. To
this end, the proposed Uncertainty-Aware TransFuse fuses
RGB and depth features using CNNs with Transformer-
based attention. Incorporating uncertainty leverages
weighted reliance upon sensor reliability/uncertainty
heuristics during inference. Experimental results on the
KITTI dataset demonstrated statistically significant
improvements over the baseline, in navigation accuracy,
object detection performance, and lane detection
performance, even when the scenes were severely degraded.
The proposed multi-sensor fusion system works in real-time
at 32 FPS and reduces false detections in occlusion and low-
light testing conditions. In short, multi-sensor fusion of
RGB and depth, with uncertainty, increases overall
robustness and safety. The Uncertainty-Aware TransFuse
provides a robust model of real-world driving for reliable
autonomous perceiving.
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I. INTRODUCTION

As additional robotic systems are being deployed in areas
like autonomous driving, industrial automation, healthcare,
and service, the demand for robust perception and
navigation in a myriad of contexts has increased. Over the
years, robot perception has evolved from a rule-based
systems that only utilized single sensor modalities (e.g.,
sonar or camera) to learning-based paradigms that utilize
advances in computer vision, probabilistic models, and
SLAM [3]. Unfortunately, the relationship between data and
perception has changed due to the emergence of deep
learning, which has allowed automatic feature extraction
and hierarchical representation of sensory data to produce a
more robust and adaptive understanding of intricate scenes.
Significantly, multi-modal sensor fusion in sensing which

Dr. Sourabh Mandaloi
Associate Professor
Department of Computer Science
SAM College
Bhopal, Madhya Pradesh, India

leverages uncorrelated/complementary data (LIDAR, RGB
camera and an IMU) has become a "go to" approach in
overcoming the limitations of single modalities and
improving decision making in uncertain and unstructured
environments [2][4].
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Figure 1. Evolution of Robot Perception [4]
Reliable navigation is critical for autonomous robots
executing tasks in, complex and uncertain environments.
Navigation entails precise localization, obstacle avoidance,
and planning safe motions for paths in the presence of the
challenges of sensor noise, dynamic objects, and
environmental changes [5]. Single-sensor systems struggle
to perform when occluded, or in challenging environments,
thereby limiting their reliability in real-world applications.
Deep learning-based multi-modal fusion enhances
reliability by combining information from complementary
sensors such as cameras, LIDAR, and IMUs [6]. Vision—
LiDAR fusion increases the robot's understanding of depth
information whereas IMUs act as a check on localization
and reduce the risk of unreliable velocity estimates thus
increasing safety in navigation. This suggests that
perception is important as it allows robots to sense, interpret,
and either or both physically and informationally interact
with the surrounding environment [7] [8]. Sensor-based
perception systems (e.g., cameras, LiIDAR, sonar, or IMUs)
generate awareness of the surroundings in real-time with
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each having their respective advantages and limitations [9]
[10]. Using multiple modalities to run perception systems
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increases the robustness of the navigation and reliability of
operation across different and dynamic environments [11].

Table 1. Challenges in Dynamic and Unstructured Environments [12]

Challenge Description
Sensor Noise and | Environmental factors introduce noise in sensor data, reducing accuracy of perception
Uncertainty and navigation.

Occlusion and Clutter

Obstacles and overlapping objects hinder object recognition and scene understanding.

Dynamic Objects
navigation.

Moving entities such as humans, vehicles, or drones create unpredictable scenarios for

Environmental Variability
modality sensors.

Changing lighting, weather, and terrain conditions degrade the reliability of single-

Real-Time Processing

decision-making.

High-dimensional multi-sensor data requires efficient algorithms to ensure timely

Adaptability and

Generalization

complex settings.

Difficulty in transferring models trained in one environment to new, unseen, and

The integration of different sensing modalities is a crucial
part of enhanced robot perceptions as it can fuse different
sensor data to produce a more complete understanding of the
environment. With complementary sensing, robots can use
information from multiple sensors to mitigate the
weaknesses inherent with each sensor, thus increasing both
the robustness of the robot's perception and improved
decision-making under dynamic uncertain states [13].
Single-modality systems have inherent limitations; for
example, cameras cannot see in lows-light levels or fog,
LiDAR does not function well in heavy rain or snow, and
inertial measurement units (IMU) have drift over time, all of
which degrades perception accuracy and compromises
navigation safety [14][15]. The advantages of the different
sensors can be utilized in a fusing sensing environment,
where cameras can register rich visual detail, LIDAR can
measure accurate 3D structural information, and IMUs are
capable of tracking motion for temporary periods of time
[16]. Fusing modalities provides redundancy, resilience, and
contextual awareness to ensure the robot operates
consistently and reliably across varying environments [17].

Figure 2 Overview of architecture for classification [14]
Various sensing modalities provide unique perspectives on
the environment, and combining these modalities increases
robustness, accuracy, and adaptability in complicated and
dynamic situations [18]. Vision, LiDAR, IMU, audio, and

tactile sensors help robots perceive and understand their
environment more effectively. Vision-based sensors such as
RGB, depth and stereo cameras are used to detect and
classify objects, localize the robot, and create an
understanding of the environment, and RGB cameras are
popular sensors that capture color and texture, (e.g., objects
and surfaces), while depth and stereo cameras capture 3D
spatial information (e.g., a scene) based on disparity [19].
Although the performance of vision sensors can be
negatively influenced with poor lighting or glare, they are
often cost-effective, high-resolution, and mimic human-like
perception, which is essential for effective autonomous
navigation and decision making [20]. In contrast, LIDAR
generates very accurate 3D point clouds using lasers that are
reflected from surrounding surfaces to help create 3D maps,
detect obstacles, and identify robot paths regardless of light
level [21]. Although LiDAR is limited in heavy rain or fog,
its structural accuracy makes it an essential sensor to support
reliable perception and autonomous navigation [22].

Piezoeesistive 2ad

Figure 3 Common Modalities in Robot Perception [18]
Inertial Measurement Units (IMUs), which include
accelerometers and gyroscopes, help in estimating motion
and orientation to allow for short-term localization in
situations where no visual data is available or GPS is
unavailable. IMUs can be fused with odometry to obtain
displacement and heading to position an object accurately
on a map [23] [24]. IMUs can drift but provide low-power,
low-footprint motion information and can advance overall
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perception accuracy and system reliability when fused with
vision and LiDAR.

A. Deep Learning for Robot Perception

Through deep learning, we ensure enhanced feature
extraction and robust integration and decision-making
processes for working in multi-modal and multi-complex
environments [25]. Figure 3 describes learning-based
mobile manipulation control framework.
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Figure 4 Learning-based mobile manipulation control
framework [25]
Table 2 Traditional vs. Deep Learning Approaches [26]-
[27]
Aspect Traditional Deep Learning
Approaches Approaches
Feature Handcrafted, Automatic,
Extraction domain-specific hierarchical
features feature learning
Adaptability Limited High adaptability
generalization with large datasets
across
environments
Performance Struggles ~ with | Excels in object
in Complex | unstructured, detection,
Tasks dynamic data segmentation, and
recognition
Scalability Difficult to | Scales effectively
extend for high- | with multi-modal
dimensional data | and  large-scale
datasets
Real-Time Lower High accuracy but
Processing computational requires optimized
requirements, but | hardware and
less accurate algorithms

Convolutional Neural Networks (CNNs) are the state-of-
the-art approach for visual perception in robotics, where
they are able to learn spatial features automatically; for
example, edges, textures, and shapes for object detection,
segmentation, depth estimation, etc. [28]. CNNs can learn
to combine visual data with LiDAR or IMU inputs during
multi-modal fusion to improve understanding of the robot's
environment [29]. Although they can be computationally
expensive, CNNs are essential to help autonomous systems
gain perception and interaction abilities. Conversely,
Recurrent Neural Networks (RNNs) are used with CNNs
for modelling temporal dependencies -- for example, when
tracking where something is going, or predicting motion, or
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planning route [30]. RNN variants of CNNs, such as LSTM
or GRU, can allow for long-term learning, enabling CNN-
RNN fusion to achieve robust spatial-temporal perception
to navigate autonomously [31].

II. LITERATURE REVIEW
Yan et al. [1] (2023) propose GS-SLAM, a dense visual
SLAM pipeline that uses 3D Gaussian splatting to produce
smooth, high-fidelity reconstructions while jointly
estimating camera poses. The approach GS-SLAM yields
coherent dense maps that are qualitatively and
quantitatively better than many volumetric baselines on
indoor datasets, with competitive frame rates.
Nevertheless, GS-SLAM's memory and compute
requirements scale with the scene, and performance suffers
in large outdoor or highly dynamic scenes, limiting
embedded deployment.
Zhang et al. [2] (2023) addresses the drift problem and
global consistency of instant 3D reconstruction with a
global optimization framework from stereo or RGB-D
input, focusing on longer sequences. There are
improvements in trajectory error and map consistency
compared to various baselines, especially on medium-scale
indoor and outdoor sequences. The approach is reliant on
sufficient depth or stereo input and is fragile against motion
blur and extreme lighting changes, which is detrimental to
optimization and reconstruction quality.
Teed & Deng [3] (2023) introduces differentiable,
recurrent bundle adjustment into SLAM, achieving strong
performance on monocular, stereo, and RGB-D tracking
benchmarks. Later implementations also improve runtime
and robustness, showing less drift and better tracking
accuracy than classical pipelines. As mentioned, this
accuracy has a steep price: specialized GPU infrastructure
and sophisticated training are prerequisites, and the models
are ineffective in new domains without retraining.
Chen et al. [4] (2024) presents a long-term point tracking
scheme that preserves correspondences over extended time
windows to reduce odometric drift. Benchmarks
demonstrate smaller cumulative drift and improved
trajectory smoothness compared to conventional VO
methods, particularly on long sequences. The technique is
robust to intermittent occlusions, yet it still suffers under
heavy visual degradation (fog, glare), and drift accumulates
over very long durations without external corrections.
Shah et al. [5] (2024) combines optical coding with
algorithmic reconstruction to embed depth cues into
monocular images, allowing metric scale recovery without
a dedicated depth sensor. Results demonstrate significantly
reduced scale ambiguity and odometry errors nearing
RGB-D performance on curated benchmarks. The method's
limitation is in the hardware—special coded optics are
necessary—hindering adoption in commodity camera
platforms.
Francani & Maximo [6] (2023) reformulate visual
odometry as a sequential video understanding problem and
utilize transformer models to capture long-term
dependencies. The study notes better trajectory estimation
and a reduction in drift in long sequences compared to
CNN-based VO, which underlines the advantage of global
attention. Limitations come from the high computational
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and data requirements: transformers require a large amount
of training data and have a larger inference footprint, which
complicates embedded real-time usage.

Stratton et al. [7] (2023) incorporate DROID-style
differentiable optimization in a volumetric mapping
pipeline to produce dense and consistent 3D
reconstructions along with accurate pose estimation. Their
system can produce a higher fidelity map than many
streaming volumetric systems, and they improve
consistency across frames. Yet, volumetric representations
increase memory usage, and the algorithm is still difficult
to run in real-time on robotic hardware with limited
resources.

Xin et al. [8] (2025) advances Gaussian splatting for city-
scale stereo SLAM, demonstrating better scalability and
denser reconstructions than prior small-scale splatting
techniques. Early results suggest more complete scene
coverage and enhanced visual fidelity, although as a 2025
method, its maturity is limited: empirical evaluation of
robustness to heavy dynamics, varied lighting, and
widespread moving objects is still outstanding.

Mostafa et al. [9] (2025) formulate SLAM-specific
methods that emphasize safety during indoor exploration,
integrating mapping with hazard-aware planning for
collision avoidance in cluttered areas. The experiments
show dependable room-scale exploration and fewer
collisions than with simplistic frontier planners.
Nevertheless, the method targets predominantly planar
indoor environments and does not sufficiently cover 3D
navigation in multistory or highly vertical regions.

Tabrizi et al. [10] (2023) propose a biologically inspired
VO system that combines classical geometric VO with
lightweight  convolutional modules to  improve
interpretability and efficiency. Results show competitive
accuracy with a lower computational load, making it
attractive for constrained platforms. The trade-off
manifests in peak performance: it does not consistently
outperform heavyweight deep networks on the most
challenging benchmarks.

Homeyer et al. [11] (2024) build on differentiable tracking
(DROID) and 3D Gaussian splatting to perform SLAM and

SMART MOVES JOURNAL IJOSCIENCE

Volume 11, Issue 10, October 2025

photorealistic scene rendering simultaneously. Their
framework produces camera poses and renderings of
consistent high quality. However, the system’s integration
and resource demands are nontrivial, and real-time mobile
execution remains an open engineering challenge.
Isaacson et al. [12] (2023) LONER applies neural implicit
representations to LIDAR data for mapping and real-time
SLAM, providing compact scene encodings and smooth
reconstruction. The method attains mapping quality
comparable to classical point-cloud pipelines while
enabling novel rendering capabilities. However, the
lengthy training and optimization, as well as the method's
pose drift sensitivity, especially under limited computation,
can pose challenges to long-term stability.

Hagemann et al. [13] (2023) delivers a deep learning
solution for camera self-calibration with video sequences
and geometric priors, cutting down manual calibration
efforts. The evaluations exhibit good calibration accuracy
for multi-camera rigs as well as dynamic setups. The
performance of the system deteriorates in textureless or
repetitive pattern arecas where the geometry is weak, so
some calibration priors continue to be useful.
Herrera-Granda et al. [14] (2024) offer a thorough review
of monocular visual odometry and SLAM, including
classical and deep learning approaches. They highlight the
weaknesses in dealing with dynamic objects and
transferring to new domains, synthesizing what is known,
the available datasets, and what is left to be solved. Their
work is informative as a review, but there are no new
algorithms or experiments presented.

Xu et al. [15] (2024) incorporates dynamic scene modeling
into Gaussian splatting SLAM to address ghosting and
moving-object artifacts in reconstructions. From the
evaluation, it is clear that Xu’s method improves trajectory
estimates and reduces reconstruction artifacts in moving-
object scenarios relative to the static-scene splatting
baselines. The method is prohibitively expensive and
requires  meticulous  management of  dynamic
segmentation; further validations are needed for
deployment in real-world scenarios.

Table 3 Traditional Approaches to Robot Perception and Navigation

Ref Technique Used Key Findings / Results Limitations
Yanetal., [1] | GS-SLAM, dense Produces smooth, high-fidelity | Memory and compute requirements
2023 visual SLAM with 3D | dense maps; competitive frame | grow with scene scale; performance
Gaussian splatting rates; visually coherent drops in large outdoor or highly
reconstructions dynamic environments
Zhang et al., Global optimization for | Reduced trajectory error; Sensitive to motion blur and extreme
[2]2023 instant 3D improved map coherence on lighting; requires good depth/stereo
reconstruction medium-scale indoor/outdoor measurements
(stereo/RGB-D) sequences
Teed & Deng | Differentiable recurrent | Lower drift; improved tracking | Requires substantial GPU resources;
etal., [3]2023 | bundle adjustment for accuracy across monocular, limited generalization without
SLAM stereo, RGB-D benchmarks retraining
Chen et al., [4] | Long-term point Reduced cumulative drift; Fails under heavy visual degradation;
2024 tracking for visual improved trajectory drift accumulates over very long
odometry smoothness; robust to sequences without external corrections
intermittent occlusions
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Shah et al., [5]
2024

Coded visual odometry
with optical coding

Reduced scale ambiguity;
odometry errors near RGB-D
performance

Hardware-dependent; requires special
coded optics, limiting commodity
adoption

Frangani & Transformer-based Improved trajectory estimation; | High computational and data

Maximo et al., | sequential video VO lower drift on long sequences requirements; heavy inference time,

[6] 2023 challenging real-time usage

Stratton et al., | DROID-style Dense coherent 3D Volumetric representations increase

[7] 2023 differentiable reconstructions; improved memory usage; hard to run real-time on

optimization with
volumetric mapping

consistency across frames

limited hardware

Xin et al., [8]
2025

Large-scale Gaussian
splatting for outdoor
stereo SLAM

More complete scene capture;
denser reconstructions; better
visual fidelity

Early-stage method; robustness to
dynamics, diverse lighting, moving
objects not fully validated

Mostafa et al.,
[9] 2025

SLAM-centric safe
indoor exploration

Reliable room-scale
exploration; reduced collisions

Tailored to planar indoor scenarios;
does not address multi-level or vertical
3D navigation

Tabrizi et al., | Biologically inspired Competitive accuracy with Peak performance lower than
[10] 2023 VO with lightweight lower computational load; heavyweight deep networks on
CNN modules suitable for constrained challenging benchmarks
platforms
Homeyer et DROID tracking +3D | Accurate camera poses; high- High integration complexity; heavy

al.,, [11] 2024

Gaussian splatting

quality temporally coherent
renderings

resource requirements; mobile real-
time still challenging

Isaacson et al.,
[12] 2023

LONER: neural
implicit LiDAR
representations

Compact scene encodings;
smooth reconstructions;
mapping quality comparable to
classical pipelines

Training/optimization overhead;
sensitive to pose drift; limited long-
term stability with constrained compute

Hagemann et
al., [13] 2023

Deep learning camera
self-calibration

Good calibration across multi-
camera rigs; reduces manual
calibration

Performance degrades in textureless or
repetitive-pattern environments

Herrera-
Granda et al.,
[14]2024

Survey of monocular
VO and SLAM

Synthesizes performance trends
and datasets; identifies
weaknesses in dynamic scenes
and domain generalization

No new algorithmic solutions or
experiments

Xu et al., [15]
2024

Dynamic Gaussian
splatting SLAM

Reduced reconstruction
artifacts; improved trajectory in
dynamic scenes

Computationally intensive; requires
careful dynamic segmentation; real-
world deployment validation needed

III. OBJECTIVES
These objectives aim to optimize the model's efficiency,
safety, and adaptability in real-world autonomous driving
scenarios.

e Enhance Sensor Fusion: Combine data from
multiple sensors RGB, LiDAR, depth maps

e Integrate Uncertainty Estimation: Adjust sensor
reliance based on data quality to handle uncertain
conditions.

e Improve Decision-Making: Ensure accurate
autonomous driving actions steering, throttle,
braking in real-time.

e Increase Robustness: Improve performance in
dynamic and challenging environments, ensuring
safety and reliability.

IV. METHODOLOGY
This research proposes an Uncertainty-Aware TransFuse
framework for autonomous driving that fuses RGB images
and depth maps through CNNs for feature extraction and
Transformers attention for fusion. Unlike baseline
TransFuse models, the framework provides per-modality

uncertainty estimations, modeled through learnable log-
variance maps, which allow the framework to dynamically
weight collection based on input reliability. The adaptive
nature of the fusion solution provides additional robustness
for challenging situations including fog, glare, or
occlusion. The framework also provides a confidence
estimate in addition to predictions, ultimately increasing
reliability and safety in decision making. Overall, the
proposed framework creates a more robust perception
solution in urban autonomous driving environments.
A. Dataset
1. KITTI Dataset: This study uses the KITTI dataset to
evaluate the proposed Uncertainty-Aware TransFuse
model. Created by the Karlsruhe Institute of
Technology and the Toyota Technological Institute,
KITTI is a leading benchmark for autonomous driving
research. It provides real-world driving data from
urban, rural, and highway environments, including
RGB images, LiDAR point clouds, depth maps, stereo
pairs, and GPS/IMU data. The dataset features rich
annotations such as 3D bounding boxes for vehicles,
pedestrians, and cyclists, making it ideal for perception
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and detection tasks. Its diverse conditions—ranging
from daylight to adverse weather—enable robust
evaluation of multi-modal fusion systems under
realistic challenges.

2. Data Analysis: Data analysis involves inspecting,
cleaning, transforming, and modeling data to extract
meaningful insights and improve model performance.
It begins with collecting raw sensor data or annotated
samples, followed by data cleaning to handle missing
values and outliers. Exploratory Data Analysis (EDA)
identifies trends and patterns using visualization tools,
while feature extraction isolates key attributes for
model training. Machine learning models are then
evaluated using metrics such as accuracy, precision,
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recall, and Fl-score, ensuring the reliability and
interpretability of the results.

3. Data Pre-processing: Data pre-processing prepares
raw data for model training by ensuring quality and
consistency. It includes cleaning errors and duplicates,
imputing missing values, and transforming features
through scaling or normalization. Feature engineering
and data augmentation further enhance the dataset by
generating meaningful variations and preventing
overfitting. For imbalanced data, techniques such as
resampling or SMOTE are applied, while
dimensionality reduction methods like PCA help
remove noise. Effective pre-processing ensures that the
dataset is clean, balanced, and optimized for robust
model performance.
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Figure 5 Pre-Processing diagram

The machine learning workflow presented in Figure 5
extends from raw data through a set of steps to make
predictions. The first step is data pre-processing including
important tasks such as feature discretization,
normalization, dimensionality reduction, and feature
extraction. These steps help in preparing the data to train the
model efficiently. After pre-processing data, the model is
trained and evaluated with separate training, validation, and
test datasets while hyper parameters are tuned based on the
validation performance and test data is used to evaluate
performance. Validated models are then used to deploy the
model for predictions. In this context, the workflow
characterizes the important parts of reliable and accurate
machine learning applications from preparing the data
initially to evaluation.
B. Models development

Model development involves designing, training, and
optimizing a machine learning or deep learning model to
solve a specific problem. It begins with problem definition
and data preparation, including data collection, cleaning,
pre-processing, and feature engineering. The next steps
include model selection, training, and evaluation using
metrics such as accuracy, precision, recall, and F1-score.
Hyperparameter tuning and optimization techniques like
regularization, data augmentation, and ensemble methods
are applied to enhance performance. Once validated, the
model is deployed for real-world use and continuously
monitored to ensure reliability and adaptability.

1.TransFuse Model Overview: The TransFuse model
is a multi-modal fusion architecture developed for
autonomous driving, designed to integrate RGB image
data with depth or LiDAR information for
comprehensive environmental understanding. It
employs a Convolutional Neural Network (CNN)
backbone to extract local visual features and a
Transformer module to capture long-range
dependencies and fuse cross-modal data. This
combination enables the model to interpret both fine-
grained details, such as obstacles and road markings,
and the global spatial layout of the driving scene.

2. Model Capabilities and Advantages: TransFuse is
built for robustness in complex driving environments
by compensating for the weaknesses of one modality
with the strengths of another. When visual data is
degraded by weather or lighting and LiDAR data is
sparse, the model leverages complementary sensor
information to maintain accuracy. It predicts driving
actions such as steering, throttle, and braking, making
it suitable for real-time autonomous control.
Demonstrating strong performance on benchmark
datasets and real-world scenarios, TransFuse serves as
a state-of-the-art baseline for reliable and adaptive
multi-modal fusion in autonomous driving systems.
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Figure 6 Transfuse model
Figure 6 depicts an end-to-end TransFuse model that takes
RGB and LiDAR input data and predicts autonomous
driving actions, including steering, throttle, and braking.
Each model input has a corresponding encoder, and
attention is used to fuse extracted features in advance of
waypoint prediction. The waypoint predictions are
optimized during training with a loss function, and during
inference, those predictions are converted to real-time
control commands with a PID controller. This design
enables robust, adaptive decision-making mechanisms in a
model for driving.

dLN

_

Figure 7. Working of Transfuse model
This model performs 2D object recognition on the KITTI
dataset’s images. The KITTI dataset is the canonical
benchmark dataset in the field of autonomous driving. Using
Convolutional Neural Networks (CNNs) or multi-modal
(image + LiDAR) fusion, the model is able to detect and
classify objects including cars, pedestrians, and bicycles,
detected in the camera view. Additionally, the qualitative
results provides an indication of the model's ability to
localize objects through bounding boxes on a variety of
driving scenes, along with evidence of model performance
and reliability in multiple real-world conditions.

C. Uncertainty-Aware Fusion

Uncertainty-Aware Fusion is an innovative approach that
allows for the fusion of information from various sensors
and accounts for the reliability of each sensor. In traditional
fusion approaches, all modalities are treated equally, and
this approach provides estimates of per-sensor confidence
using log-variance prediction or Bayesian inference. Values
of individual and multi-sensor uncertainty can be monitored
in real-time, and each sensor's contribution will be
dynamically adjusted based on how reliable or uncertain a
given measurement appears. In autonomous driving, for
example, the camera data may be weakened due to low light
or adverse weather conditions, which allows sensors like
LiDAR or radar to have a greater weighting in fused
perception and decision making, and thus make the
appropriate changes regarding accuracy and safety. This
approach to sensor fusion also greatly improves the
robustness and adaptability of autonomous systems, which
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is essential for operating in dynamic and uncertain

o Adverne

Figure 8 Uncertainty-Aware Fusion diagram
Uncertainty-aware fusion is a modern solution to the multi-
sensor detection problem that combines data from
independent sources or modalities, such as RGB cameras
and LiDAR data, while considering the reliability or
certainty of each data sensor. It contrasts with other methods
of data fusion in multi-sensor detection that treat all sensor
inputs equally, regardless of their reliability. Using an
uncertainty-aware fusion with several fused modalities can
reduce uncertainty and improve accuracy in difficult
conditions—such as low light, occlusion, or noisy sensors—
by increasing reliance on the more reliable sensor
modalities. For example, when the camera data became
ambiguous, the fusion could rely more on the LiDAR inputs
to ensure the object detection remained at an accurate level.
The uncertainty-aware fusion method improves accuracy
and robustness, reduces false detections, and increases
confidence with the object's location. Overall, utilizing an
uncertainty-aware fusion method provides a more reliable
basis for real-time perception in autonomous driving
systems.

Figure 9 Image capture in day time
Car detection during daytime is generally more accurate due
to better lighting conditions and clear visibility. With
abundant natural light, camera sensors can capture high-
resolution images, allowing object detection models to
accurately identify vehicles, even at greater distances.
Shadows and contrast in daylight also help in enhancing
object edges, improving the model’s ability to distinguish
between different objects on the road. As a result, daytime
scenarios provide an optimal environment for testing and
evaluating car detection systems in real-world driving
situations.

—————
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Figure 10 Image capture in evening time
Detecting cars during evening hours presents unique
challenges due to low-light conditions, shadows, and glare
from artificial lighting such as street lamps and headlights.
Traditional vision-based models may struggle with visibility
and contrast, leading to reduced detection accuracy.
However, incorporating multi-modal sensor data, such as
combining RGB images with LiDAR or thermal imagery,
significantly improves performance. Advanced models
equipped with uncertainty-aware fusion can adaptively
weigh sensor inputs based on confidence, enabling more
reliable car detection even under dim or variable lighting
typically encountered in evening scenarios. This ensures
robust performance and safety in autonomous systems
operating at dusk or night.

Start

Vehicle Detection
With Cascade Source

/ompur st o] Trinina dots |
v

Figure 11 Working flow of car detection
Figure 11 the car detection flow diagram illustrates a
structured pipeline for identifying vehicles in diverse real-
world conditions, including challenging evening scenarios
with low light, glare, and reflections. To overcome the
limitations of traditional vision-based systems, modern
methods employ multi-sensor fusion, integrating RGB and
LiDAR data. By using uncertainty-aware fusion, the system
dynamically adjusts sensor weighting based on reliability—
shifting focus to LiIDAR when visual data degrades. This
adaptability ensures accurate and stable vehicle detection
under low-visibility conditions, enhancing the safety and
reliability of autonomous driving systems.

V. RESULT AND DISCUSSION
The findings clearly show that the Uncertainty-Aware
TransFuse model, which is the one that was proposed, is
better than the baseline TransFuse both in terms of accuracy
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and robustness, with its NA being 88%, LP being 0.11, FPS
being 30, and RI being 0.89. In the process of utilizing
uncertainty estimation, the model simultaneously changes
the sensor weighting in a way that increases the reliability in
extremely difficult situations such as darkness or occlusion.
Its high FPS is a confirmation of its compatibility with real-
time applications, whereas the gains in recall and precision
reveal stronger lane adherence and object detection. Further
qualitative results support the idea that the model maintains
performance regardless of the environment, hence,
uncertainty-aware fusion proves to be a significant
contributor to the stability, accuracy, and safety of
autonomous driving.
A. Library
The Uncertainty-Aware TransFuse model relies on a
number of crucial Python libraries for its implementation
and evaluation. NumPy is used for fast mathematical
operations and efficient handling of large multi-dimensional
arrays, supporting tasks such as data pre-processing, label
handling, and metric computation (accuracy, precision, and
recall). PyTorch, which is a product of Facebook Al
Research, is the main framework for deep learning that is
used to construct, train, and implement the model on the
KITTI dataset. With its dynamic computation graph, GPU
efficiency, and modular structure, it is perfect for trying out
different scenarios and real-time inference.
Scikit-learn facilitates the calculation of evaluation
metrics—precision, recall, Fl-score, and accuracy—thus
providing quality assurance for model evaluation. OpenCV
(cv2) is a library used for various image and video
processing tasks, among which is the visualization of
predictions through drawing bounding boxes and adding
class labels, as well as performing pre-processing functions
such as resizing and changing color. By their combined
powers, the libraries not only take care of data efficiently
but also allow for training, evaluation, and visualization of
the model which altogether makes a robust and trustworthy
Al pipeline for development.
B. Evaluation Metrics
Evaluation metrics are essential tools used to measure the
performance and effectiveness of machine learning or deep
learning models. In the context of your Uncertainty-Aware
Trans Fuser model for autonomous driving, several key
metrics are used:
Navigation Accuracy (NA) is a metric used to evaluate how
accurately a model predicts the correct navigational
commands, such as steering angle, throttle, or brake, in
autonomous driving systems.

NA:Number of Correct PI.‘edIICtIOnS % 100 (1)

nymber of prediction

Lane Precision (LP) is a crucial indicator that evaluates the
performance of an autonomous driving model in terms of
keeping the correct lane. It is the ratio of correct predictions
for lane-following to the total predictions made, and thus
higher LP values are associated with better lane discipline
and lower number of false detections. In the Uncertainty-
Aware TransFuse approach, LP serves as a measure for the
success of sensor data fusion in precise lane detection and
following. High precision of lanes leads to safer driving and
smoother control of the car, especially in difficult or fast-
moving areas.
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True positive

@

LP= — —
True positive +false positive
Where:

e True Positives (TP): The number of correctly predicted
lane positions that match the ground truth.

e False Positives (FP): The number of incorrectly
predicted lane positions (predictions where the model
detects a lane that doesn't exist).

Recall Index (RI) is a metric used to evaluate the model's

ability to correctly identify and recall all relevant objects or

features in a given dataset. In the context of autonomous
driving, it measures how well the model detects objects, such
as pedestrians, vehicles, or other road hazards. A higher RI
indicates that fewer objects were missed, while a lower RI

suggests that many objects were not detected by the model.
_ True positive

True Positives (TP)+False Negatives (FN)T
3

Frames per Second (FPS) is a performance metric used to
evaluate how quickly a model processes input data, typically
in real-time applications like autonomous driving. It
measures how many frames (images or data samples) the
system can process per second. Higher FPS values indicate
faster processing, which is essential for real-time decision-
making in autonomous vehicles, where immediate responses
are crucial.

FPS:TOtal Number o.f Frames Processed
Total time taken
(4)
Table 4 Result Table for the Trans Fuser model
Metric Value
Navigation Accuracy 88%
(NA)
Lane Precision (LP) 0.11
Recall Index (RI) 0.89
Frames Per Second 30 FPS
(FPS)
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Figure 12 Confusion matrix for the Trans Fuser model
The confusion matrix for the Trans Fuser model shows how
well the model performed in detecting objects. The matrix
reveals that the model correctly identified 880 true positives
(TP), where objects were detected accurately, and 800 true
negatives (TN), where no object was detected when there was
none. However, there were 120 false positives (FP), where
the model incorrectly detected objects that were not present,
and 80 false negatives (FN), where the model missed objects
that were actually present. This matrix helps visualize the
model's performance, indicating a high number of correct
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detections and classifications, with some room for
improvement in reducing false alarms and missed objects.
Table 5 Result table of uncertainty aware fusion

Metric Uncertainty-
Aware Fusion
Navigation 91%
Accuracy (NA)
Lane Precision 0.14
(LP)
Recall Index 0.93
(RD
Frames Per 32 FPS
Second (FPS)

The Result Table for the Uncertainty-Aware Fusion model
shows great performance through its key metrics—
Navigation Accuracy (91%), Lane Precision (0.09), Recall
Index (0.92), and Frames per Second (28). The model
predicts driving actions accurately by varying the sensors’
reliability dynamically according to the uncertainty
estimations, this way ensuring precise lane detection and
reliable object recognition even in the dark or during
occlusion. It keeps almost real-time processing by lowering
the FPS a little bit, which makes it possible for the system to
make a timely decision. In a nut shell, the model provides
high precision, robustness, and effectiveness and is thus very
suitable for driverless cars in challenging and unpredictable

surroundings.

Confusion Matrix - Uncertainty-Aware Fusion Model
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Xo Coject

True Labels

oject Detected

= 200

No Object
Predicted Labels

Object ODetected

Figure 13 Confusion Matrix - Uncertainty-Aware Fusion
Model
The confusion matrix for the Uncertainty-Aware Fusion
model visually represents its performance in distinguishing
between objects and non-objects. The matrix shows that the
model correctly identified 500 true positives (TP), where
objects were detected accurately, and 400 true negatives
(TN), where no object was detected when it wasn’t present.
However, there were 50 false positives (FP), where the model
incorrectly detected objects, and 20 false negatives (FN),
where the model missed actual objects. This matrix helps
assess the model’s overall effectiveness, indicating that while
it performs well, there is still room for improvement in
reducing false detections and missed objects.
Table 5 Result comparison table

Metric Transfuser | Uncertainty-
Model Aware Fusion
Model
Navigation 88% 90%
Accuracy
(NA)
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Lane 0.11 0.14
Precision
(LP)
Recall
Index (RI)
Frames Per
Second
(FPS)
The comparison between the TransFuser and Uncertainty-
Aware Fusion models reveals notable performance
improvements across key metrics for autonomous driving.
The Uncertainty-Aware Fusion model achieves higher
Navigation Accuracy (91% vs. 88%) and Recall Index (0.92
vs. 0.89), indicating better prediction of driving actions and
improved object detection under varying sensor reliability.
However, the TransFuser model shows slightly better Lane
Precision (0.11 vs. 0.14), suggesting greater accuracy in
maintaining lane boundaries with fewer false detections.
Both models exhibit comparable real-time efficiency, with
the Uncertainty-Aware Fusion model achieving 32 FPS
compared to 30 FPS for TransFuser. Overall, the
Uncertainty-Aware  Fusion model delivers superior
adaptability, accuracy, and robustness, while maintaining

competitive processing speed.

0.89 0.93

30 FPS 32 FPS

Result Comparison Graph

100%
80%
60%
40%
20%
0% .
Navigation Lane Precision Recall Index  Frames Per
Accuracy (NA) (LP) (RI) Second (FPS

B TransFuser Model Uncertainty-Aware Fusion Model

Figure 14 Result Comparison Graph
The result comparison graph visually contrasts the
performance of the Transfuser and Uncertainty-Aware
Fusion models across key metrics: Navigation Accuracy
(NA), Lane Precision (LP), Recall Index (RI), and Frames
per Second (FPS). The Uncertainty-Aware Fusion model
achieves higher NA (91% vs. 88%) and RI (0.92 vs. 0.89),
showing stronger adaptability and object detection under
varying sensor reliability. Meanwhile, the Transfuser model
slightly outperforms in LP (0.11 vs. 0.14), reflecting more
precise lane adherence. Both models maintain real-time
efficiency, with the Uncertainty-Aware Fusion model
running at 32 FPS compared to 30 FPS. Overall, the graph
highlights that incorporating uncertainty estimation improves
navigation accuracy, detection reliability, and robustness,
making the Uncertainty-Aware Fusion model better suited
for complex autonomous driving scenarios.
VI. CONCLUSION

This study introduces the Uncertainty-Aware TransFuse
model, an innovative multi-modal fusion approach aimed at
improving perception and decision-making for autonomous
driving. The model facilitates multi-modal fusion of RGB
and depth images with an estimated uncertainty score in
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order to weigh the reliability of the sensors, resulting in a
more accurate and robust means of navigation and object
detection in both low illumination, fog, and occlusion
situations. The model was tested in real situations and
provided superior Navigation Accuracy and Recall Index to
the baseline TransFuser, along with real-time performance of
32 FPS. While the lane precision was slightly lower, the
overall robustness and adaptability significantly benefit
safety and reliability. Moreover, with uncertainty modeling,
the system can better deal with ambiguous or degraded inputs
to give it a more robust performance in real-time
environments which are often dynamic. Accordingly, the
Uncertainty-Aware TransFuse framework represents a
significant step toward safer and more reliable autonomous
driving systems.
Contflict of Interest: The corresponding author, on behalf of
second author, confirms that there are no conflicts of interest
to disclose.
Copyright: © 2025 Vikash Kumar Verma, Dr. Sourabh
Mandaloi Author(s) retain the copyright of their original
work while granting publication rights to the journal.
License: This work is licensed under a Creative Commons
Attribution 4.0 International License, allowing others to
distribute, remix, adapt, and build upon it, even for
commercial purposes, with proper attribution. Author(s) are
also permitted to post their work in institutional repositories,
social media, or other platforms.
References
References

[1] Z. Teed and J. Deng, “DROID-SLAM: Deep Visual
SLAM for Monocular, Stereo, and RGB-D Cameras,” in
Advances in Neural Information Processing Systems,
vol. 34, 2021. [Online]. Available: arXiv:2108.10869.
W. Chen, X. Zhang, Y. Sun, et al., “LEAP-VO: Long-
term Effective Any Point Tracking for Visual
Odometry,” in Proc. IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR), 2024, pp. 19844—
19853, doi:10.1109/CVPR52733.2024.01876.
S. Shah, N. Rajyaguru, C. D. Singh, C. A. Metzler and
Y. Aloimonos, “CodedVO: Coded Visual Odometry,”
IEEFE Robotics and Automation Letters, 2024. [Online].
Available: arXiv:2407.18240.
doi:10.1109/LRA.2024.3416788.
O. Frangani and M. R. O. A. Maximo, “Transformer-
Based Model for Monocular Visual Odometry: A Video
Understanding Approach,” arXiv:2305.06121, 2023.
P. Stratton, S. S. Garimella, A. Saxena, N. Amutha and
E. Gerami, “Volume-DROID: A  Real-Time
Implementation of Volumetric Mapping with DROID-
SLAM,” arXiv:2306.06850, 2023.
Z. Xin, C. Wu, P. Huang, Y. Zhang, Y. Mao and G.
Huang, “Large-Scale Gaussian Splatting SLAM (LSG-
SLAM),” arXiv:2505.09915, May 2025.
O. Mostafa, N. Evangeliou and A. Tzes, “SLAM-based
Safe Indoor Exploration Strategy,” in Proc. 11th Int.
Conf. Automation, Robotics and Applications (ICARA),
2025. doi:10.1109/ICARA64554.2025.10977630.
H. B. Tabrizi and C. Crick, “Brain-Inspired Visual
Odometry: Balancing Speed and Interpretability through
a System of Systems Approach,” arXiv:2312.13162,
Dec. 2023.
C. Homeyer, A. et al., “Combining End-to-End SLAM
with 3D Gaussian Splatting,” arXiv, 2024.

(2]

29


https://ijellh.com/index.php/OJS/index
https://ijellh.com/index.php/OJS/index
https://ijoscience.com/index.php/ojsscience/issue/view/118

ISSN: 2582-4600

[10] S. Isaacson, T. “LONER: LiDAR-Only Neural
Representations for Real-Time SLAM,” arXiv, 2023.

[11] Hagemann, M. et al., “Deep Geometry-Aware Camera
Self-Calibration from Video,” in Proc. IEEE/CVF Int.
Conf. Computer Vision (ICCV), 2023, pp. 3415-3425,
doi:10.1109/ICCV51070.2023.00318.

[12] E. P. Herrera-Granda, J. C. Torres-Cantero and D. H.
Peluffo-Ordofiez, “Monocular visual SLAM, visual
odometry, and structure-from-motion methods applied to
3D reconstruction: A comprehensive survey,” Heliyon,
vol. 10, e37356, 2024.
doi:10.1016/j.heliyon.2024.e37356.

[13] Y. Xu, H. Jiang, Z. Xiao, J. Feng and L. Zhang, “DG-
SLAM: Robust Dynamic Gaussian Splatting SLAM with
Hybrid Pose Optimization,” in Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2024.
[Online]. Available: arXiv:2411.08373.

[14] X. Yue, et al., “LiDAR-based SLAM: A Survey,” arXiv,
2023.

[15] Koval, B., “Evaluation of LiDAR-based 3D SLAM
Algorithms in SubT,” arXiv, 2023.

[16] Z. Wang, X., “Improved LeGO-LOAM by Outlier
Elimination,” Measurement, 2023, Art. no. 112767.
doi:10.1016/j.measurement.2023.112767.

[17] B. Shen, L., “LIO-SAM++: Lidar-Inertial Semantic
SLAM,” Sensors, vol. 24, no. 23, art. no. 7546, 2024.
doi:10.3390/524237546.

[18] W. Wu, H., “DALI-SLAM: Degeneracy-aware LiDAR-
Inertial,” ScienceDirect / arXiv, 2025.

[19] S. Isaacson, “LONER: LiDAR Neural Representations
for SLAM,” arXiv, 2023.

[20] NV-LIO, “Normal-Vector based Lidar-Inertial
Odometry (NV-LIO),” arXiv / conference paper, 2024.

[21] N. Prieto-Fernandez, , “Weighted Conformal LiDAR-
Mapping,” arXiv, 2024.

[22] M. D. Duc, X., “LiDAR-Encoder-IMU Factor-Graph
Fusion,” arXiv, 2024. Benchmark studies on LIO-SAM
/ LeGO-LOAM / Cartographer (2023-2024).

[23] M. Filipenko and I. Afanasyev, “Comparison of Various
SLAM Systems for Mobile Robot in an Indoor
Environment,” arXiv:2501.09490, 2025.

[24] S. Alaba, T. and U., “GPS-IMU UKF Fusion for Robust
Navigation,” arXiv / Sensors, 2024.

[25] W. Loffler, , “Train Localization with IMU During
GNSS Outages,” arXiv / conference 2024.

[26] K. Mouzakidou, , “Airborne Sensor Fusion: Accuracy
Gains,” ScienceDirect (journal/Elsevier), 2024.

[27] Y. Xu et al., “DG-SLAM / Dynamic Gaussian Splatting
(NeurIPS-related),” NeurIPS / arXiv, 2024.

[28] M. Hilger, A. “4D Imaging Radar Loop Closure for
SLAM,” arXiv:2501.xxxx, 2025.

[29]T. Tahves, J. Gu, M. Bellone and R. Sell, “CLFT:
Camera-LiDAR Fusion Transformer for Traffic Object
Segmentation,” arXiv:2501.02858, Jan. 2025. arXiv+]1

SMART MOVES JOURNAL IJOSCIENCE

Volume 11, Issue 10, October 2025

30


https://ijellh.com/index.php/OJS/index
https://ijellh.com/index.php/OJS/index
https://ijoscience.com/index.php/ojsscience/issue/view/118
https://arxiv.org/abs/2501.02858?utm_source=chatgpt.com

