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Abstract: The growing frequency of attacks and increasing 

sophistication have brought forth the shortcomings of 

traditional IDSs, which are incapable of zero-day threat 

detection and carrying out comparative studies on 

imbalanced datasets. Challenged with such constraints, the 

researchers have ended up encouraging the hybridization of 

ML and DL techniques. ML approaches, which include 

Decision Trees, Random Forests, and Support Vector 

Machines, offer interpretability and efficiency, while DL 

systems, which consist of CNNs, RNNs, and Autoencoders, 

exhibit superior feature extraction and pattern recognition 

capabilities. Unlike typical ML systems which heavily rely 

on manual feature engineering, DL systems require vast 

amounts of labeled data, the deployment of which is still a 

challenge due to its computational complexity. Hybrid 

approaches combine the advantages of representation 

learning in DL with efficient and interpretable classification 

by ML. Therefore, this review integrates the state-of-the-art 

advances in hybrid-based IDS concerning the enhancement 

of Detection Accuracy, decrease of FP rate, and adaptive 

behavior to the dynamics of the attack landscapes. 

Benchmark evaluations on datasets such as NSL-KDD, 

UNSW-NB15, and CICIDS2017 have shown the hybrid 

models to be notably successful in balancing between 

precision, scalability, and real-time considerations. 

However, challenges in speed traffic handling, explaining, 

and privacy concerns in distributed environments remain. 

The future directions encompass researching federated 

learning, transfer learning, and lightweight architectures 

toward optimized IDSs for cloud, IoT, and critical 

infrastructures. 

Keywords: Intrusion Detection Systems, Machine 

Learning, Deep Learning, Hybrid Models, Cybersecurity, 

Anomaly Detection, Network Security. 

I. INTRODUCTION 

The rapid growth of digital technologies and the widespread 

proliferation of the Internet have created a connective array 

that allows people to talk to each other, perform 

transactions, or simply share information. However, such 

interconnectedness makes computer networks more 

susceptible to malicious activities, ranging from 

unauthorized access to large-scale cyberattacks [1]. In 

modern times, IDS plays a paramount role in protecting the 

networks as they monitor traffic patterns, identify deviant 

behavior, and respond to threats in real time. Even if 

traditional approaches tend to work well to some extent, 

they might not keep up with the growing intricacy, 

multiplicity, and sophistication of cyber threats. Growing 

need has propelled some researchers to investigate novel 

ML and DL techniques to impart higher accuracy, further 

adaptability, and enhanced efficiency to the current IDS 

landscape [2]. 

 

The detection of intrusions has always been viewed in two 

opposing approaches: misuse-based detection and 

anomaly-based detection. Misuse-based detection relies on 

attack signatures, giving good performance over known 

threats but incapable of detecting new or zero-day attacks 

[3]. Conversely, anomaly-based detection models normal 

system behavior, tagging anomalies as intrusions should 

there be any; the upside is that this approach can catch 

unknown attacks, while the downside is its inability to 

accurately model normal behavior, thus generating 

numerous false alarms [4]. Hence, in this tug of war 

between accuracy, generalization, and robustness, the 

hybrid approaches combining the two method strengths 

have gradually emerged. Machine learning methods that 

make use of Decision Trees (DT), Random Forests (RF), 

SVM, and k-NN have been liberally applied in the IDS. 

They learn from historic network traffic data and classify 

patterns as either normal or malicious. They are easy to 

explain, efficient, and require a moderate computational 

time. However, ML-based IDS are unable to cope with 

large-scale, high-dimensional, and dynamic network traffic 

[5]. Most of the time, their success critically depends on 

handcrafted feature engineering, which in turn limits their 

adaptation to fast-changing threat environments. Deep 

learning, being a sub-area of ML, presents an alternative of 

sorts wherein it allows for the automatic extraction of 

features and learning of representations from raw or semi-

processed network traffic data. Architectures such as 

Convolutional Neural Networks, Recurrent Neural 
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Networks, LSTMs, and Autoencoders have outperformed 

other approaches in spatiotemporal recognition, anomaly 

detection, and modeling highly dynamic traffic.  

 
Figure 1 Principal of IDS 

 

These methods, thereby, eliminate the need for manual 

feature selection while being capable of discovering hidden 

correlations between network flows [6]. On the downside, 

however, DL techniques require voluminous amounts of 

labeled data, high computational power, and are prone to 

MCMC-mouths, thereby becoming impractical in real-

world scenarios where data is usually noisy, imbalanced, or 

partially labeled. 

In the realm of IDSs, hybrid models have emerged as 

superior approach to undo the constraints of stand-alone 

ML and DL techniques. A hybrid ML-DL approach is 

expected to complement both paradigms. For instance, a 

DL model can be trained to extract features suitably and 

robustly from raw traffic data, while ML classifiers such as 

Random Forests or XGBoost make decisions on the 

extracted features efficiently and interpretably [7]. Thus, 

consider a hybrid anomaly-misuse detection system 

wherein DL would capture intricate data and ML would 

generalize across varying data distributions. This, in turn, 

enhances testing, reduces false positives, scaling out to 

become the real-world solution put into place. Data 

imbalance is another vital matter in IDS research. Network 

intrusion data sets tend to be skewed in distribution, where 

normal traffic constitutes the majority, and attack samples 

grow rarer, especially when they correspond to zero-day or 

less-prevalent attack categories [8]. Hybrid approaches thus 

alleviate this problem, combining advanced resampling 

methods, ensembles, and feature augmentation 

mechanisms-or otherwise face compromises in proper 

learning among classes. Transfer and federated learning in 

association with hybrid models, on the other hand, can 

encourage sharing and growing knowledge across domains, 

while ensuring privacy for the data. Recent research reveals 

how hybrid IDS outclass traditional methods over 

benchmark datasets such as NSL-KDD, UNSW-NB15, and 

CICIDS2017 [9]. These systems have proved to do so with 

higher detection rates, robustness against advanced attacks, 

and increased tolerance to false alarms, thereby making 

them fit for real-time use in cloud computing, IoT networks, 

and critical infrastructure. However, the computational 

overhead, interpretability of deep models, and scalability to 

high-speed networks remain open areas for research. 

II. MACHINE LEARNING IN IDS 

The rapid growth of cyber threats in the past decade has 

opened new paradigms to implement intelligent IDS that 

are able to detect known and unknown attack types. These 

approaches have included ML, thanks to its adaptability and 

the nature of data that arrives in high dimensions. Since 

then, several ML models have been presented, 

benchmarked over NSL-KDD, UNSW-NB15, and 

CICIDS2017 datasets, among others, and refined to 

enhance classification accuracy, precision, recall, and F1 

score. Despite such promising results with respective 

drawbacks-i.e., high false alarms, poor generalization to 

unseen environments, and degradation in performance on 

imbalanced datasets-remain. 

Several studies have gone about evaluating tree-based 

classifiers like Decision Trees, Random Forests, and 

Gradient Boosting and have often reported extraordinary 

accuracies. An example of a work used with Random Forest 

and Support Vector Machines with optimization on NSL-

KDD, reporting an overall accuracy of 97.5%, a Sensitivity 

of 86.8%, and a Detection Rate of 88.0% [10]. But the 

approach was not very successful in detecting rare classes 

such as U2R and R2L attacks because the dataset was 

imbalanced. Another study used optimization techniques 

with Random Forest and achieved an accuracy and 

precision of 99.81% on the same dataset [11]. Nevertheless, 

these impressive values conceal the detection rate for U2R 

attacks, which was only 68.75%, revealing the difficulty in 

identifying minority classes. 

As another approach to increasing IDS robustness, 

ensemble methods have also been studied. A boosting-

based IDS yielded 99.54% accuracy, 99.53% precision, and 

99.54% recall with 10-fold cross-validation [12]. Although 

the near-perfect AUC was demonstrated, the testing was 

carried out on a private dataset, leading to issues about 

reproducibility and overfitting problems in the model. 

Another study on optimized feature selection with tree-

based classifiers raised the NSL-KDD accuracy to 99.3% 

from 85.0%, while precision and recall values were greater 

than 0.98 [13]. However, both exhaustive and population-

based feature selection techniques are resource-intensive, 

rendering them unscalable in a real-time detection system. 

Some works introduced dimensionality reduction 

techniques to curb the effects of feature dimensionality. 

One ML approach supported by deep learning reduced the 

dimension of features from 43 to 8 and achieved an 

accuracy of 97.93%, with the balanced precision, recall, and 

F1 score at approximately 97% [14]. Although the reduced 

feature set increased efficiency, the set might omit 

indication features of rare intrusions, thus threatening 

robustness. In contrast, another study applied wrapper-

based feature selection coupled with multiple ML models, 

obtaining 91.5% accuracy across the NSL-KDD, KDD'99, 

and UNSW-NB15 datasets [15]. Although they were 
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capable of enforcing per-class detection, wrapper methods 

were far too expensive computationally and hence 

impractical for high-speed networks. 

Aside from the feature-selection detail, the combinations of 

models in hybrid ones have also been of interest. On the 

other hand, a hybrid network based on misuse and anomaly 

detection yielded 94.03% accuracy, 95.37% precision, and 

90.53% recall on NSL-KDD [16]. The hybrid structure tried 

to balance the detection of known and novel attacks, given 

that the dependence on signatures limited adaptation against 

emerging ones. Another comparative research was held on 

CICIDS2017 and UNSW-NB15 respectively where results 

showed 100% accuracy on CICIDS2017 and 98.9% on 

UNSW-NB15 using ensemble ML models [17]. Even 

though results could appear impressive, an almost-perfect 

detection usually points toward dataset leakage or funding 

over-processing, casting a doubt on its applicability in real-

world settings. 

A number of research investigations compared a broad-set 

ML techniques. Decision Tree–based IDS models gave 

99.20% accuracy, 95.63% precision, 96.89% recall, and 

96.14% F1-score on NSL-KDD [18]. CatBoost, 

LightGBM, and XGBoost were also the three that were 

highly evaluated, with XGBoost beating the rest with all 

average metrics above 99.5 across datasets [19]. These 

results, while strengthening the argument of boosting, seem 

almost too high and often reflect biases inherent to the 

benchmark datasets that are not representative of evolving 

real-world traffic. 

Metaheuristic optimization has been used to improve, 

hence, Intrusion Detection Systems. A Novel Energy 

Optimization algorithm attained 98.95% of accuracy when 

used with the Decision Tree algorithm and 98.47% with the 

KNN algorithm, with dimension reduction from 42 to 18 

[20]. Although performance improved, optimization was, 

indeed, dataset-dependent and so, one wonders whether the 

developed model can generalize to other environments. 

Similarly, hybrid optimization of Random Forest to 

Wireless Sensor Networks also improves generalization 

while maintaining good accuracy [21]. Yet, the model did 

not sufficiently consider energy and bandwidth constraints 

which are very important in sensor networks. 

Recent research indicates increasing trends toward 

lightweight and interpretable machine learning applications 

for IoT-based IDS. The ensemble technique combines 

Kolmogorov-Arnold Networks with XGBoost to achieve 

detection rates of >99% with a precision, recall, and F1 

score greater than 98% [22]. The system was considered 

robust, but the evaluation used synthetically balanced IoT 

traffic, substantially restricting generalizability to real noisy 

IoT environments. Another IoT-based IDS used an image-

based feature encoding technique along with deep ML 

processes for >90% accuracy on multiple datasets [23]. But 

transforming the network traffic into images increases 

computational overhead, which is considered unfavorable 

for any latency-sensitive IoT system. 

With all these high-performing methods, some studies yet 

did not attain excellent results. For instance, one of the 

models rated with 83.58% accuracy and 84.49% recall on 

NSL-KDD [24]. This goes to show that all ML-based IDS 

pipelines do not perform better than the conventional ones, 

Do especially if inadequacy attends their data preprocessing 

or balancing. Accuracies of about 87% were, furthermore, 

seen on mixed datasets for CatBoost and Decision Tree 

classifiers, which at the very least suggests that datasets' 

choice largely dictates performance [25]. 

In all these studies, one recurring limitation is the class 

imbalance problem. Overall accuracy of 95% is often 

reported, but performance on minority classes like U2R and 

R2L is always weak-it sometimes barely hits the 70% mark. 

Another challenge is convenience sampling: Because of 

this, many works attain extremes of promising results on 

NSL-KDD or CICIDS2017, yet the real-life testing 

potential is still uncertain due to the dataset aging, a noise-

free environment, and simpler attack representations. At the 

same time, the computational cost and scaling potentials 

appear to become critical bottlenecks when deployed in 

IoT, cloud, and edge systems. 

Table 1 Machine Learning for IDS 

Ref Technique(s) Used Dataset(s) Results Limitation(s) 

[10] Random Forest + SVM 

with optimization 

NSL-KDD Accuracy: 97.5%, Sensitivity: 

86.8%, DR: 88.0% 

Poor detection of rare 

classes (U2R, R2L) due to 

imbalance 

[11] Random Forest + 

optimization 

NSL-KDD Accuracy & Precision: 99.81% Low detection rate for U2R 

(68.75%) 

[12] Boosting-based IDS Private dataset Accuracy: 99.54%, Precision: 

99.53%, Recall: 99.54% 

Private dataset → 

reproducibility & 

overfitting concerns 

[13] Optimized feature 

selection + tree-based 

classifiers 

NSL-KDD Accuracy: 99.3% (↑ from 

85%), Precision & Recall > 

0.98 

Resource-intensive feature 

selection, unscalable in real 

time 

[14] Dimensionality 

reduction + ML + DL 

NSL-KDD Accuracy: 97.93%, 

Precision/Recall/F1 ≈ 97% 

Risk of omitting features 

for rare attacks 

[15] Wrapper-based feature 

selection + ML models 

NSL-KDD, 

KDD’99, UNSW-

NB15 

Accuracy: 91.5% High computational cost, 

unsuitable for high-speed 

networks 

[16] Hybrid misuse + 

anomaly detection 

NSL-KDD Accuracy: 94.03%, Precision: 

95.37%, Recall: 90.53% 

Limited adaptability to 

new/emerging attacks 
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[17] Ensemble ML models CICIDS2017, 

UNSW-NB15 

Accuracy: 99% 

(CICIDS2017), 98.9% 

(UNSW-NB15) 

Results may reflect dataset 

leakage or overprocessing 

[18] Decision Tree IDS NSL-KDD Accuracy: 99.20%, Precision: 

95.63%, Recall: 96.89%, F1: 

96.14% 

Benchmark dataset bias 

[19] CatBoost, LightGBM, 

XGBoost (boosting 

methods) 

Multiple IDS 

datasets 

All metrics > 99.5% 

(XGBoost best) 

Unrealistically high due to 

dataset bias 

[20] Metaheuristic Energy 

Optimization + Decision 

Tree, KNN 

NSL-KDD Accuracy: 98.95% (DT), 

98.47% (KNN), Reduced 

features: 42 → 18 

Strong dataset dependence, 

poor generalization 

[21] Hybrid optimization of 

Random Forest for WSN 

Wireless Sensor 

Network dataset 

High accuracy with improved 

generalization 

Ignores energy/bandwidth 

constraints in WSN 

[22] Ensemble (Kolmogorov-

Arnold Networks + 

XGBoost) 

IoT dataset 

(synthetic) 

DR > 99%, 

Precision/Recall/F1 > 98% 

Synthetic IoT data limits 

real-world generalization 

[23] Image-based feature 

encoding + ML/DL 

Multiple IDS 

datasets 

Accuracy > 90% High computational 

overhead, unsuitable for 

IoT latency needs 

[24] ML model (unspecified 

pipeline) 

NSL-KDD Accuracy: 83.58%, Recall: 

84.49% 

Weaker than conventional 

IDS, poor preprocessing 

[25] CatBoost + Decision 

Tree 

Mixed IDS 

datasets 

Accuracy: ~87% Strong dataset dependency; 

results vary with dataset 

choice 

III. DEEP LEARNING FOR IDS 

Deep learning has lately been well-appreciated to serve as 

the perfect instrument for the modern intrusion detection 

systems (IDSs) that are capable of discovering complex 

patterns within network traffic data that conventional 

methods often tend to overlook. Some authors have applied 

advanced architectures, including CNN, RNN, LSTM, 

GRU, Autoencoders, GANs, together with some hybrid 

embodiments of DL, so as to maximize the detection 

accuracy on benchmark datasets and datasets collected 

under real-world conditions. One approach applied the 

CNN model on the CICIDS2017 dataset, recording an 

accuracy of 98.7%, a precision of 98.2%, a recall of 97.9%, 

and an F1-score of 98.0% [26]. The application, albeit 

strong in performance, required considerable computational 

overhead, making real-time deployments in IoT 

environments impossible. Similarly, a Bi-LSTM model 

achieving 97.4% accuracy was evaluated on UNSW-NB15, 

with an AUC of 98.1% and F1-score of 96.8% [27], 

although it was very prone to hyperparameter tuning. 

Another research employed a hybrid CNN-LSTM 

accounting for accuracies of 99.2 percent, recording 

precision of 99.1 percent, 98.9 percent of recall, and an F1-

score of 99.0 percent on NSL-KDD [28]. While promising, 

this approach was shown to be beset with reduced 

performance for minority classes of attack such as U2R and 

R2L. Attention-based LSTMs have also been tried, 

producing 99.3 percent accuracy and 99.2 recall on 

CICIDS2017 [29]. However, interpretability of attention 

weights has still proved an obstacle. One system therein 

achieved 96.5% accuracy, a precision of 95.8%, and an 

AUC of 97.2% on NSL-KDD [30]; however, it registered 

false positives on normal traffic comparatively higher. A 

variational autoencoder with adversarial training improved 

this to 97.9% accuracy and 97.5% F1-score on UNSW-

NB15 [31], but the adversarial robustness still remains 

slight. Besides, GAN-based IDS frameworks have also 

been widely considered. For example, GAN-IDS can 

achieve an accuracy, precision, recall, respectively, of 

98.8%, 98.6%, and 98.7% on CICIDS2017 [32]. However, 

sometimes this suffer from mode collapse, being otherwise 

unable to generalize. Another conditional GAN variant 

could reach 99.1% F1-score and 99.3% AUC [33], but its 

cumbersome training time was a handicap. 

Lightweight DL techniques for IoT IDS have been 

proposed. MobileNet-based IDS has been achieved with 

95.6% accuracy and 94.8% F1-score [34]. It had minimized 

computational cost but was not good at large-scale attacks. 

Similarly, an optimized GRU claimed 96.9% accuracy and 

96.5% recall on IoT traffic [35], whereas the memory 

overhead has hindered its deployment on edge devices. 

Transformer-based models are currently the most followed 

option. One IDS utilizing BERT-like embeddings could 

reach 99.4% accuracy, 99.3% precision, and 99.5% recall 

[36], but it required large-scale pretraining. Another one 

used a hybrid Transformer–CNN model with an AUC of 

99.6% and an F1 score of 98.9% [37], with latency 

problems remaining for real-time processing. When it 

comes to ensemble DL models, they have also been tested. 

Using CICIDS2017, an ensemble CNN–RNN–

Autoencoder framework reported 99.2% accuracy, 99.0% 

recall, and 99.1% F1-score [38], but the system uses heavy 

resources. Following a similar trend, a DL–XGBoost hybrid 

registered 99.3% accuracy and 99.5% AUC [39] but 

suffered from overfitting due to bias in the dataset. Cross-

dataset testing has been lot emphasized. DL built with the 

NSL-KDD for training and the CICIDS2017 and BoT-IoT 

for testing gave an accuracy of 97.5 to 99.1% [40]. 

However, the recall of this DL model dropped around 10% 

https://ijellh.com/index.php/OJS/index
https://ijellh.com/index.php/OJS/index
https://ijoscience.com/index.php/ojsscience/issue/view/118


ISSN: 2582-4600                            SMART MOVES JOURNAL IJOSCIENCE                         Volume 11, Issue 10, October 2025 
 

  

 

when dealing with unseen traffic. On the other hand, a 

federated DL framework was put forward for IDS in IoT 

scenarios and attained 96.7% accuracy and an F1-score of 

96.3% [41]; the price paid was communication overheads.  

Recently, an explainable deep IDS framework is gaining 

interest. Such an interpretable CNN achieved 97.8% 

accuracy, with an AUC of 98.2% [42], but due to the very 

high-level nature of the explanations, a non-expert audience 

would have difficulty grasping them. Another explainable 

hybrid-model approach recorded a recall of 98.6% and an 

F1 score of 98.5% [43] but had to juggle among 

transparency, model-building, and performance. 

Table 2 Deep Learning for IDS 

Ref Technique / Model Dataset Results Limitations 

[26] CNN CICIDS2017 Acc: 98.7%, Prec: 98.2%, Rec: 

97.9%, F1: 98.0% 

High computational overhead, 

unsuitable for IoT real-time use 

[27] Bi-LSTM UNSW-NB15 Acc: 97.4%, AUC: 98.1%, F1: 

96.8% 

Sensitive to hyperparameter 

tuning 

[28] CNN–LSTM hybrid NSL-KDD Acc: 99.2%, Prec: 99.1%, Rec: 

98.9%, F1: 99.0% 

Poor detection of rare classes 

(U2R, R2L) 

[29] Attention-based 

LSTM 

CICIDS2017 Acc: 99.3%, Rec: 99.2% Lack of interpretability of 

attention weights 

[30] Autoencoder NSL-KDD Acc: 96.5%, Prec: 95.8%, 

AUC: 97.2% 

Higher false positives in normal 

traffic 

[31] Variational 

Autoencoder + 

Adversarial 

Training 

UNSW-NB15 Acc: 97.9%, F1: 97.5% Weak adversarial robustness 

[32] GAN-based IDS CICIDS2017 Acc: 98.8%, Prec: 98.6%, Rec: 

98.7% 

Mode collapse, limited 

generalization 

[33] Conditional GAN CICIDS2017 F1: 99.1%, AUC: 99.3% Long training time 

[34] MobileNet 

(Lightweight DL) 

IoT dataset Acc: 95.6%, F1: 94.8% Struggles with large-scale 

attacks 

[35] Optimized GRU IoT traffic Acc: 96.9%, Rec: 96.5% Memory overhead limits edge 

deployment 

[36] Transformer 

(BERT-like) 

Network dataset Acc: 99.4%, Prec: 99.3%, Rec: 

99.5% 

Requires large-scale pretraining 

[37] Transformer–CNN 

hybrid 

Network dataset AUC: 99.6%, F1: 98.9% Latency issues in real-time 

detection 

[38] Ensemble CNN–

RNN–Autoencoder 

CICIDS2017 Acc: 99.2%, Rec: 99.0%, F1: 

99.1% 

Very resource-intensive 

[39] DL–XGBoost 

hybrid 

Network dataset Acc: 99.3%, AUC: 99.5% Dataset bias → overfitting 

[40] DL (Cross-dataset) NSL-KDD, 

CICIDS2017, 

BoT-IoT 

Acc: 97.5%–99.1% Recall dropped ~10% on unseen 

traffic 

[41] Federated DL 

framework 

IoT traffic Acc: 96.7%, F1: 96.3% High communication overheads 

[42] Explainable CNN Network dataset Acc: 97.8%, AUC: 98.2% Explanations too abstract for 

non-experts 

[43] Explainable hybrid 

DL model 

Network dataset Rec: 98.6%, F1: 98.5% Trade-off between transparency 

and performance 
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IV. COMPARATIVE PERFORMCE OF ML 

TECHNIQUES FOR IDS 

 
Figure 2 Comparative Performance of Ml Techniques for 

IDS [10], [12], [13] 

Figure 2 shows comparison of Techniques for IDS 

Optimization of Random Forest provides the best overall 

accuracy for IDS among the techniques compared. 

Boosting-based and feature-selected tree-based models also 

perform strongly but may trade a small fraction of accuracy 

for efficiency or interpretability. All three techniques show 

that ML-based approaches can achieve near-perfect 

detection performance on benchmark datasets, although the 

chart does not reflect challenges like detecting rare attack 

classes or real-time deployment constraints. 

V. CONCLUSION AND FUTURE WORK   

This work reviews the different proposed ML- and DL-

based techniques for Intrusion Detection Systems, tracing 

the evolution of these systems from tree-based classifiers to 

the most sophisticated neural network architectures. ML 

methods, such as Decision Trees, Random Forests, 

Gradient Boosting, XGBoost, have yielded very good 

accuracies in general, the highest reported accuracy being 

99.81% using optimized Random Forest classifiers [11]. 

They model structured network traffic patterns efficiently, 

and this makes them useful; however, these approaches 

have difficulties in handling imbalanced datasets and 

detecting minority attack classes. On the other hand, DL 

methods comprising CNNs, LSTMs, GRUs, Autoencoders, 

GANs, and hybrid frameworks are best at capturing 

complex temporal patterns in the network traffic. Among 

the DL approach, the best accuracy was by ensemble or 

hybrid methods of about 99.6% with Transformer-CNN 

architectures [37]. Because of their ability to learn 

hierarchical feature representations automatically, handle 

high dimensional data, and evolve with changing attack 

patterns, the DL method has gained traction. However, it is 

worth mentioning that these models are highly resource-

intensive and require extensive hyperparameter tuning. 

Future endeavors should look at creating lightweight, 

interpretable, federated DL frameworks for real-time 

deployment in heterogeneous IoT and edge networks. 

Cross-dataset validation, robust detection of minority 

classes, and incorporation of explainable AI will need to be 

emphasized to strengthen practically applicable, scalable, 

and trustworthy IDS solutions in dynamic large-scale 

environments. 
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