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Abstract: The growing frequency of attacks and increasing
sophistication have brought forth the shortcomings of
traditional IDSs, which are incapable of zero-day threat
detection and carrying out comparative studies on
imbalanced datasets. Challenged with such constraints, the
researchers have ended up encouraging the hybridization of
ML and DL techniques. ML approaches, which include
Decision Trees, Random Forests, and Support Vector
Machines, offer interpretability and efficiency, while DL
systems, which consist of CNNs, RNNs, and Autoencoders,
exhibit superior feature extraction and pattern recognition
capabilities. Unlike typical ML systems which heavily rely
on manual feature engineering, DL systems require vast
amounts of labeled data, the deployment of which is still a
challenge due to its computational complexity. Hybrid
approaches combine the advantages of representation
learning in DL with efficient and interpretable classification
by ML. Therefore, this review integrates the state-of-the-art
advances in hybrid-based IDS concerning the enhancement
of Detection Accuracy, decrease of FP rate, and adaptive
behavior to the dynamics of the attack landscapes.
Benchmark evaluations on datasets such as NSL-KDD,
UNSW-NBI15, and CICIDS2017 have shown the hybrid
models to be notably successful in balancing between
precision, scalability, and real-time considerations.
However, challenges in speed traffic handling, explaining,
and privacy concerns in distributed environments remain.
The future directions encompass researching federated
learning, transfer learning, and lightweight architectures
toward optimized IDSs for cloud, IoT, and critical
infrastructures.

Keywords: Intrusion Detection Systems, Machine
Learning, Deep Learning, Hybrid Models, Cybersecurity,
Anomaly Detection, Network Security.

I. INTRODUCTION

The rapid growth of digital technologies and the widespread
proliferation of the Internet have created a connective array
that allows people to talk to each other, perform
transactions, or simply share information. However, such
interconnectedness makes computer networks more
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susceptible to malicious activities, ranging from

unauthorized access to large-scale cyberattacks [1]. In
modern times, IDS plays a paramount role in protecting the
networks as they monitor traffic patterns, identify deviant
behavior, and respond to threats in real time. Even if
traditional approaches tend to work well to some extent,
they might not keep up with the growing intricacy,
multiplicity, and sophistication of cyber threats. Growing
need has propelled some researchers to investigate novel
ML and DL techniques to impart higher accuracy, further
adaptability, and enhanced efficiency to the current IDS
landscape [2].

The detection of intrusions has always been viewed in two
opposing approaches: misuse-based detection and
anomaly-based detection. Misuse-based detection relies on
attack signatures, giving good performance over known
threats but incapable of detecting new or zero-day attacks
[3]. Conversely, anomaly-based detection models normal
system behavior, tagging anomalies as intrusions should
there be any; the upside is that this approach can catch
unknown attacks, while the downside is its inability to
accurately model normal behavior, thus generating
numerous false alarms [4]. Hence, in this tug of war
between accuracy, generalization, and robustness, the
hybrid approaches combining the two method strengths
have gradually emerged. Machine learning methods that
make use of Decision Trees (DT), Random Forests (RF),
SVM, and k-NN have been liberally applied in the IDS.
They learn from historic network traffic data and classify
patterns as either normal or malicious. They are easy to
explain, efficient, and require a moderate computational
time. However, ML-based IDS are unable to cope with
large-scale, high-dimensional, and dynamic network traffic
[5]. Most of the time, their success critically depends on
handcrafted feature engineering, which in turn limits their
adaptation to fast-changing threat environments. Deep
learning, being a sub-area of ML, presents an alternative of
sorts wherein it allows for the automatic extraction of
features and learning of representations from raw or semi-
processed network traffic data. Architectures such as
Convolutional Neural Networks, Recurrent Neural
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Networks, LSTMs, and Autoencoders have outperformed
other approaches in spatiotemporal recognition, anomaly
detection, and modeling highly dynamic traffic.
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Figure 1 Principal of IDS

These methods, thereby, eliminate the need for manual
feature selection while being capable of discovering hidden
correlations between network flows [6]. On the downside,
however, DL techniques require voluminous amounts of
labeled data, high computational power, and are prone to
MCMC-mouths, thereby becoming impractical in real-
world scenarios where data is usually noisy, imbalanced, or
partially labeled.

In the realm of IDSs, hybrid models have emerged as
superior approach to undo the constraints of stand-alone
ML and DL techniques. A hybrid ML-DL approach is
expected to complement both paradigms. For instance, a
DL model can be trained to extract features suitably and
robustly from raw traffic data, while ML classifiers such as
Random Forests or XGBoost make decisions on the
extracted features efficiently and interpretably [7]. Thus,
consider a hybrid anomaly-misuse detection system
wherein DL would capture intricate data and ML would
generalize across varying data distributions. This, in turn,
enhances testing, reduces false positives, scaling out to
become the real-world solution put into place. Data
imbalance is another vital matter in IDS research. Network
intrusion data sets tend to be skewed in distribution, where
normal traffic constitutes the majority, and attack samples
grow rarer, especially when they correspond to zero-day or
less-prevalent attack categories [8]. Hybrid approaches thus
alleviate this problem, combining advanced resampling
methods, ensembles, and feature augmentation
mechanisms-or otherwise face compromises in proper
learning among classes. Transfer and federated learning in
association with hybrid models, on the other hand, can
encourage sharing and growing knowledge across domains,
while ensuring privacy for the data. Recent research reveals
how hybrid IDS outclass traditional methods over
benchmark datasets such as NSL-KDD, UNSW-NB15, and
CICIDS2017 [9]. These systems have proved to do so with
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higher detection rates, robustness against advanced attacks,
and increased tolerance to false alarms, thereby making
them fit for real-time use in cloud computing, [oT networks,
and critical infrastructure. However, the computational
overhead, interpretability of deep models, and scalability to
high-speed networks remain open areas for research.

II. MACHINE LEARNING IN IDS

The rapid growth of cyber threats in the past decade has
opened new paradigms to implement intelligent IDS that
are able to detect known and unknown attack types. These
approaches have included ML, thanks to its adaptability and
the nature of data that arrives in high dimensions. Since
then, several ML models have been presented,
benchmarked over NSL-KDD, UNSW-NBI15, and
CICIDS2017 datasets, among others, and refined to
enhance classification accuracy, precision, recall, and F1
score. Despite such promising results with respective
drawbacks-i.e., high false alarms, poor generalization to
unseen environments, and degradation in performance on
imbalanced datasets-remain.

Several studies have gone about evaluating tree-based
classifiers like Decision Trees, Random Forests, and
Gradient Boosting and have often reported extraordinary
accuracies. An example of a work used with Random Forest
and Support Vector Machines with optimization on NSL-
KDD, reporting an overall accuracy of 97.5%, a Sensitivity
of 86.8%, and a Detection Rate of 88.0% [10]. But the
approach was not very successful in detecting rare classes
such as U2R and R2L attacks because the dataset was
imbalanced. Another study used optimization techniques
with Random Forest and achieved an accuracy and
precision of 99.81% on the same dataset [11]. Nevertheless,
these impressive values conceal the detection rate for U2R
attacks, which was only 68.75%, revealing the difficulty in
identifying minority classes.

As another approach to increasing IDS robustness,
ensemble methods have also been studied. A boosting-
based IDS yielded 99.54% accuracy, 99.53% precision, and
99.54% recall with 10-fold cross-validation [12]. Although
the near-perfect AUC was demonstrated, the testing was
carried out on a private dataset, leading to issues about
reproducibility and overfitting problems in the model.
Another study on optimized feature selection with tree-
based classifiers raised the NSL-KDD accuracy to 99.3%
from 85.0%, while precision and recall values were greater
than 0.98 [13]. However, both exhaustive and population-
based feature selection techniques are resource-intensive,
rendering them unscalable in a real-time detection system.
Some works introduced dimensionality reduction
techniques to curb the effects of feature dimensionality.
One ML approach supported by deep learning reduced the
dimension of features from 43 to 8 and achieved an
accuracy of 97.93%, with the balanced precision, recall, and
F1 score at approximately 97% [14]. Although the reduced
feature set increased efficiency, the set might omit
indication features of rare intrusions, thus threatening
robustness. In contrast, another study applied wrapper-
based feature selection coupled with multiple ML models,
obtaining 91.5% accuracy across the NSL-KDD, KDD'99,
and UNSW-NBI15 datasets [15]. Although they were
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capable of enforcing per-class detection, wrapper methods
were far too expensive computationally and hence
impractical for high-speed networks.

Aside from the feature-selection detail, the combinations of
models in hybrid ones have also been of interest. On the
other hand, a hybrid network based on misuse and anomaly
detection yielded 94.03% accuracy, 95.37% precision, and
90.53% recall on NSL-KDD [16]. The hybrid structure tried
to balance the detection of known and novel attacks, given
that the dependence on signatures limited adaptation against
emerging ones. Another comparative research was held on
CICIDS2017 and UNSW-NBI15 respectively where results
showed 100% accuracy on CICIDS2017 and 98.9% on
UNSW-NBI5 using ensemble ML models [17]. Even
though results could appear impressive, an almost-perfect
detection usually points toward dataset leakage or funding
over-processing, casting a doubt on its applicability in real-
world settings.

A number of research investigations compared a broad-set
ML techniques. Decision Tree—based IDS models gave
99.20% accuracy, 95.63% precision, 96.89% recall, and
96.14% Fl-score on NSL-KDD [18]. CatBoost,
LightGBM, and XGBoost were also the three that were
highly evaluated, with XGBoost beating the rest with all
average metrics above 99.5 across datasets [19]. These
results, while strengthening the argument of boosting, seem
almost too high and often reflect biases inherent to the
benchmark datasets that are not representative of evolving
real-world traffic.

Metaheuristic optimization has been used to improve,
hence, Intrusion Detection Systems. A Novel Energy
Optimization algorithm attained 98.95% of accuracy when
used with the Decision Tree algorithm and 98.47% with the
KNN algorithm, with dimension reduction from 42 to 18
[20]. Although performance improved, optimization was,
indeed, dataset-dependent and so, one wonders whether the
developed model can generalize to other environments.
Similarly, hybrid optimization of Random Forest to
Wireless Sensor Networks also improves generalization
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while maintaining good accuracy [21]. Yet, the model did
not sufficiently consider energy and bandwidth constraints
which are very important in sensor networks.

Recent research indicates increasing trends toward
lightweight and interpretable machine learning applications
for IoT-based IDS. The ensemble technique combines
Kolmogorov-Arnold Networks with XGBoost to achieve
detection rates of >99% with a precision, recall, and F1
score greater than 98% [22]. The system was considered
robust, but the evaluation used synthetically balanced IoT
traffic, substantially restricting generalizability to real noisy
IoT environments. Another IoT-based IDS used an image-
based feature encoding technique along with deep ML
processes for >90% accuracy on multiple datasets [23]. But
transforming the network traffic into images increases
computational overhead, which is considered unfavorable
for any latency-sensitive [oT system.

With all these high-performing methods, some studies yet
did not attain excellent results. For instance, one of the
models rated with 83.58% accuracy and 84.49% recall on
NSL-KDD [24]. This goes to show that all ML-based IDS
pipelines do not perform better than the conventional ones,
Do especially if inadequacy attends their data preprocessing
or balancing. Accuracies of about 87% were, furthermore,
seen on mixed datasets for CatBoost and Decision Tree
classifiers, which at the very least suggests that datasets'
choice largely dictates performance [25].

In all these studies, one recurring limitation is the class
imbalance problem. Overall accuracy of 95% is often
reported, but performance on minority classes like U2R and
R2L is always weak-it sometimes barely hits the 70% mark.
Another challenge is convenience sampling: Because of
this, many works attain extremes of promising results on
NSL-KDD or CICIDS2017, yet the real-life testing
potential is still uncertain due to the dataset aging, a noise-
free environment, and simpler attack representations. At the
same time, the computational cost and scaling potentials
appear to become critical bottlenecks when deployed in
0T, cloud, and edge systems.

Table 1 Machine Learning for IDS

Ref Technique(s) Used Dataset(s) Results Limitation(s)
[10] | Random Forest + SVM NSL-KDD Accuracy: 97.5%, Sensitivity: | Poor detection of rare
with optimization 86.8%, DR: 88.0% classes (U2R, R2L) due to
imbalance
[11] | Random Forest + NSL-KDD Accuracy & Precision: 99.81% | Low detection rate for U2R
optimization (68.75%)
[12] | Boosting-based IDS Private dataset Accuracy: 99.54%, Precision: | Private dataset —
99.53%, Recall: 99.54% reproducibility &

overfitting concerns

anomaly detection

95.37%, Recall: 90.53%

[13] | Optimized feature NSL-KDD Accuracy: 99.3% (1 from Resource-intensive feature
selection + tree-based 85%), Precision & Recall > selection, unscalable in real
classifiers 0.98 time

[14] | Dimensionality NSL-KDD Accuracy: 97.93%, Risk of omitting features
reduction + ML + DL Precision/Recall/F1 = 97% for rare attacks

[15] | Wrapper-based feature NSL-KDD, Accuracy: 91.5% High computational cost,
selection + ML models KDD’99, UNSW- unsuitable for high-speed

NB15 networks
[16] | Hybrid misuse + NSL-KDD Accuracy: 94.03%, Precision: | Limited adaptability to

new/emerging attacks
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[17] | Ensemble ML models CICIDS2017, Accuracy: 99% Results may reflect dataset
UNSW-NB15 (CICIDS2017), 98.9% leakage or overprocessing
(UNSW-NBI5)
[18] | Decision Tree IDS NSL-KDD Accuracy: 99.20%, Precision: | Benchmark dataset bias
95.63%, Recall: 96.89%, F1:
96.14%
[19] | CatBoost, LightGBM, Multiple IDS All metrics > 99.5% Unrealistically high due to
XGBoost (boosting datasets (XGBoost best) dataset bias
methods)
[20] | Metaheuristic Energy NSL-KDD Accuracy: 98.95% (DT), Strong dataset dependence,
Optimization + Decision 98.47% (KNN), Reduced poor generalization
Tree, KNN features: 42 — 18
[21] | Hybrid optimization of Wireless Sensor High accuracy with improved | Ignores energy/bandwidth
Random Forest for WSN | Network dataset generalization constraints in WSN
[22] | Ensemble (Kolmogorov- | IoT dataset DR > 99%, Synthetic IoT data limits
Arnold Networks + (synthetic) Precision/Recall/F1 > 98% real-world generalization
XGBoost)
[23] | Image-based feature Multiple IDS Accuracy > 90% High computational
encoding + ML/DL datasets overhead, unsuitable for
10T latency needs
[24] | ML model (unspecified NSL-KDD Accuracy: 83.58%, Recall: Weaker than conventional
pipeline) 84.49% IDS, poor preprocessing
[25] | CatBoost + Decision Mixed IDS Accuracy: ~87% Strong dataset dependency;
Tree datasets results vary with dataset
choice

III. DEEP LEARNING FOR IDS

Deep learning has lately been well-appreciated to serve as
the perfect instrument for the modern intrusion detection
systems (IDSs) that are capable of discovering complex
patterns within network traffic data that conventional
methods often tend to overlook. Some authors have applied
advanced architectures, including CNN, RNN, LSTM,
GRU, Autoencoders, GANSs, together with some hybrid
embodiments of DL, so as to maximize the detection
accuracy on benchmark datasets and datasets collected
under real-world conditions. One approach applied the
CNN model on the CICIDS2017 dataset, recording an
accuracy of 98.7%, a precision of 98.2%, a recall of 97.9%,
and an Fl-score of 98.0% [26]. The application, albeit
strong in performance, required considerable computational
overhead, making real-time deployments in IoT
environments impossible. Similarly, a Bi-LSTM model
achieving 97.4% accuracy was evaluated on UNSW-NBI5,
with an AUC of 98.1% and Fl-score of 96.8% [27],
although it was very prone to hyperparameter tuning.
Another research employed a hybrid CNN-LSTM
accounting for accuracies of 99.2 percent, recording
precision of 99.1 percent, 98.9 percent of recall, and an F1-
score of 99.0 percent on NSL-KDD [28]. While promising,
this approach was shown to be beset with reduced
performance for minority classes of attack such as U2R and
R2L. Attention-based LSTMs have also been tried,
producing 99.3 percent accuracy and 99.2 recall on
CICIDS2017 [29]. However, interpretability of attention
weights has still proved an obstacle. One system therein
achieved 96.5% accuracy, a precision of 95.8%, and an
AUC of 97.2% on NSL-KDD [30]; however, it registered
false positives on normal traffic comparatively higher. A
variational autoencoder with adversarial training improved

this to 97.9% accuracy and 97.5% F1-score on UNSW-
NBI15 [31], but the adversarial robustness still remains
slight. Besides, GAN-based IDS frameworks have also
been widely considered. For example, GAN-IDS can
achieve an accuracy, precision, recall, respectively, of
98.8%, 98.6%, and 98.7% on CICIDS2017 [32]. However,
sometimes this suffer from mode collapse, being otherwise
unable to generalize. Another conditional GAN variant
could reach 99.1% F1-score and 99.3% AUC [33], but its
cumbersome training time was a handicap.

Lightweight DL techniques for IoT IDS have been
proposed. MobileNet-based IDS has been achieved with
95.6% accuracy and 94.8% F1-score [34]. It had minimized
computational cost but was not good at large-scale attacks.
Similarly, an optimized GRU claimed 96.9% accuracy and
96.5% recall on IoT traffic [35], whereas the memory
overhead has hindered its deployment on edge devices.
Transformer-based models are currently the most followed
option. One IDS utilizing BERT-like embeddings could
reach 99.4% accuracy, 99.3% precision, and 99.5% recall
[36], but it required large-scale pretraining. Another one
used a hybrid Transformer—CNN model with an AUC of
99.6% and an F1 score of 98.9% [37], with latency
problems remaining for real-time processing. When it
comes to ensemble DL models, they have also been tested.
Using CICIDS2017, an ensemble CNN-RNN-
Autoencoder framework reported 99.2% accuracy, 99.0%
recall, and 99.1% F1-score [38], but the system uses heavy
resources. Following a similar trend, a DL-XGBoost hybrid
registered 99.3% accuracy and 99.5% AUC [39] but
suffered from overfitting due to bias in the dataset. Cross-
dataset testing has been lot emphasized. DL built with the
NSL-KDD for training and the CICIDS2017 and BoT-IoT
for testing gave an accuracy of 97.5 to 99.1% [40].
However, the recall of this DL model dropped around 10%
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when dealing with unseen traffic. On the other hand, a
federated DL framework was put forward for IDS in [oT
scenarios and attained 96.7% accuracy and an F1-score of
96.3% [41]; the price paid was communication overheads.

Recently, an explainable deep IDS framework is gaining F1
interest. Such an interpretable CNN achieved 97.8%
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accuracy, with an AUC of 98.2% [42], but due to the very
high-level nature of the explanations, a non-expert audience
would have difficulty grasping them. Another explainable
hybrid-model approach recorded a recall of 98.6% and an
score of 98.5% [43] but had to juggle among
transparency, model-building, and performance.

Table 2 Deep Learning for IDS

Ref | Technique / Model Dataset Results Limitations
[26] CNN CICIDS2017 Acc: 98.7%, Prec: 98.2%, Rec: High computational overhead,
97.9%, F1: 98.0% unsuitable for IoT real-time use
[27] Bi-LSTM UNSW-NB15 Acc: 97.4%, AUC: 98.1%, F1: Sensitive to hyperparameter
96.8% tuning
[28] | CNN-LSTM hybrid NSL-KDD Acc: 99.2%, Prec: 99.1%, Rec: Poor detection of rare classes
98.9%, F1: 99.0% (U2R, R2L)
[29] Attention-based CICIDS2017 Acc: 99.3%, Rec: 99.2% Lack of interpretability of
LSTM attention weights
[30] Autoencoder NSL-KDD Acc: 96.5%, Prec: 95.8%, Higher false positives in normal
AUC: 97.2% traffic
[31] Variational UNSW-NB15 Acc: 97.9%, F1: 97.5% Weak adversarial robustness
Autoencoder +
Adversarial
Training
[32] GAN-based IDS CICIDS2017 Acc: 98.8%, Prec: 98.6%, Rec: Mode collapse, limited
98.7% generalization
[33] | Conditional GAN CICIDS2017 F1:99.1%, AUC: 99.3% Long training time
[34] MobileNet IoT dataset Acc: 95.6%, F1: 94.8% Struggles with large-scale
(Lightweight DL) attacks
[35] Optimized GRU IoT traffic Acc: 96.9%, Rec: 96.5% Memory overhead limits edge
deployment
[36] Transformer Network dataset | Acc: 99.4%, Prec: 99.3%, Rec: | Requires large-scale pretraining
(BERT-like) 99.5%
[37] | Transformer—CNN Network dataset AUC: 99.6%, F1: 98.9% Latency issues in real-time
hybrid detection
[38] Ensemble CNN— CICIDS2017 Acc: 99.2%, Rec: 99.0%, F1: Very resource-intensive
RNN-Autoencoder 99.1%
[39] DL-XGBoost Network dataset Acc: 99.3%, AUC: 99.5% Dataset bias — overfitting
hybrid
[40] | DL (Cross-dataset) NSL-KDD, Acc: 97.5%-99.1% Recall dropped ~10% on unseen
CICIDS2017, traffic
BoT-IoT
[41] Federated DL IoT traffic Acc: 96.7%, F1: 96.3% High communication overheads
framework
[42] | Explainable CNN Network dataset Acc: 97.8%, AUC: 98.2% Explanations too abstract for
non-experts
[43] | Explainable hybrid | Network dataset Rec: 98.6%, F1: 98.5% Trade-off between transparency
DL model and performance
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IV. COMPARATIVE PERFORMCE OF ML
TECHNIQUES FOR IDS

COMPARATIVE PERFORMCE OF ML TECHNIQUES FOR IDS

Figure 2 Comparative Performance of Ml Techniques for
IDS [10], [12], [13]

Figure 2 shows comparison of Techniques for IDS
Optimization of Random Forest provides the best overall
accuracy for IDS among the techniques compared.
Boosting-based and feature-selected tree-based models also
perform strongly but may trade a small fraction of accuracy
for efficiency or interpretability. All three techniques show
that ML-based approaches can achieve near-perfect
detection performance on benchmark datasets, although the
chart does not reflect challenges like detecting rare attack
classes or real-time deployment constraints.

V. CONCLUSION AND FUTURE WORK

This work reviews the different proposed ML- and DL-
based techniques for Intrusion Detection Systems, tracing
the evolution of these systems from tree-based classifiers to
the most sophisticated neural network architectures. ML
methods, such as Decision Trees, Random Forests,
Gradient Boosting, XGBoost, have yielded very good
accuracies in general, the highest reported accuracy being
99.81% using optimized Random Forest classifiers [11].
They model structured network traffic patterns efficiently,
and this makes them useful; however, these approaches
have difficulties in handling imbalanced datasets and
detecting minority attack classes. On the other hand, DL
methods comprising CNNs, LSTMs, GRUs, Autoencoders,
GANSs, and hybrid frameworks are best at capturing
complex temporal patterns in the network traffic. Among
the DL approach, the best accuracy was by ensemble or
hybrid methods of about 99.6% with Transformer-CNN
architectures [37]. Because of their ability to learn
hierarchical feature representations automatically, handle
high dimensional data, and evolve with changing attack
patterns, the DL method has gained traction. However, it is
worth mentioning that these models are highly resource-
intensive and require extensive hyperparameter tuning.

Future endeavors should look at creating lightweight,
interpretable, federated DL frameworks for real-time
deployment in heterogeneous IoT and edge networks.
Cross-dataset validation, robust detection of minority
classes, and incorporation of explainable Al will need to be
emphasized to strengthen practically applicable, scalable,
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and trustworthy IDS solutions in dynamic large-scale
environments.

Conlflict of Interest: The corresponding author, on behalf
of second author, confirms that there are no conflicts of
interest to disclose.

Copyright: © 2025 Shrishti Kumari, Sugandh Singh,
Arjun Rajput, Surbhi Karsoliya Author(s) retain the
copyright of their original work while granting publication
rights to the journal.

License: This work is licensed under a Creative Commons
Attribution 4.0 International License, allowing others to
distribute, remix, adapt, and build upon it, even for
commercial purposes, with proper attribution. Author(s) are
also permitted to post their work in institutional
repositories, social media, or other platforms.

References

[1] S.D.Kumar, R. Selvakumar, and R. S. Raj, “Intrusion
detection system using machine learning techniques
and feature selection,” Journal of Ambient
Intelligence and Humanized Computing, vol. 11, no.
11, pp. 57095722, Nov. 2020.

[2] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep
learning approach to network intrusion detection,”
IEEE  Transactions on Emerging Topics in
Computational Intelligence, vol. 4, no. 2, pp. 127—
138, Apr. 2020.

[3] S. Garg, A. Kaur, and N. Kumar, “Hybrid deep
learning-based anomaly detection scheme for smart
healthcare networks,” [EEE Transactions on
Industrial Informatics, vol. 16, no. 8, pp. 5244-5253,
Aug. 2020.

[4] H. Choi, M. Kim, G. Lee, and W. Kim, “Unsupervised
learning approach for network intrusion detection
system using autoencoders,” The Journal of
Supercomputing, vol. 76, no. 2, pp. 775-791, Feb.
2020.

[5] M. Ring, S. Wunderlich, D. Griidl, and A. Hotho,
“Flow-based network traffic generation using
generative adversarial networks,” Computers &
Security, vol. 89, pp. 101659, Feb. 2020.

[6] Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep
learning approach for network intrusion detection
system,” Future Generation Computer Systems, vol.
98, pp. 219-231, Sept. 2020.

[71 F. Hodo, X. Bellekens, A. Hamilton, and C.
Tachtatzis, “Threat analysis of IoT networks using
artificial neural network intrusion detection system,”
Procedia Computer Science, vol. 141, pp. 253-259,

2020.
[8] R. Vinayakumar, K. P. Soman, and P.
Poornachandran, “Applying convolutional neural

network  for network intrusion detection,”
International Journal of Network Security, vol. 22, no.
2, pp. 231-240, Mar. 2020.

[9] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye,
“Intrusion detection using convolutional neural
networks for representation learning,” Security and
Communication Networks, vol. 2020, pp. 1-10, 2020.


https://ijellh.com/index.php/OJS/index
https://ijellh.com/index.php/OJS/index
https://ijoscience.com/index.php/ojsscience/issue/view/118

ISSN: 2582-4600

[10]M. Zakariah, S. A. AlQahtani, A. M. Alawwad, and
A. A. Alotaibi, “Intrusion Detection System with
Customized Machine Learning Techniques for NSL-
KDD Dataset,” Comput. Mater. Contin., vol. 77, no.
3, pp- 40254054, 2023.

[11]1Q. Abbas et al, “Optimization of predictive
performance of intrusion detection system classifiers,”
Appl. Sci., vol. 13, no. 3, pp. 1-20, 2023.

[12]H. M. Rai et al., “The Improved Network Intrusion
Detection Techniques,” Mathematics, vol. 12, no. 2,
pp. 1-15, 2024.

[13]P. Waghmode et al., “Intrusion detection system based
on machine learning and exhaustive feature
selection,” Sci. Rep., vol. 14, no. 1, pp. 1-15, 2024.

[14]M. Farhan et al., “Network-based intrusion detection
using deep learning and feature reduction,” Sci. Rep.,
vol. 15, pp. 1-12, 2025

[15]M. Umer et al., “Network intrusion detection model
using wrapper-based feature selection,” IEEE Access,
vol. 13, pp. 1-15, 2025.

[16]A. A. Amouri et al., “Network intrusion detection and
prevention system using hybrid approaches,” Wiley
Security J., vol. 14, no. 4, pp. 321-333, 2024.

[17]S. A. Ajagbe et al., “A Comparison Study of Machine
Learning Models Using Intrusion Detection Datasets,”
SN Comput. Sci., vol. 5, no. 2, pp. 1-15, 2024.

[18]Rachid Tahri, Abdellatif Lasbahani, Abdessamad
Jarrar, Youssef Balouki “Intelligent Intrusion
Detection Using Decision Trees,” JSJU J. Comput.,
vol. 12, no. 3, pp. 77-85, 2024.

[19]H. M. Rai et al., “The Improved Network Intrusion
Detection Techniques,” Mathematics, vol. 12, no. 2,
pp. 1-15, 2024.

[20]M. M. Alhusseini and M. R. F. Derakhshi, “Hybrid
Al-Driven Intrusion Detection: Framework and Case
Studies,” arXiv preprint arXiv:2503.11234,2025.

[21]V. K. Pandey et al., “Enhancing intrusion detection in
wireless sensor networks using Tabu Search—
optimized Random Forest,” Sci. Rep., vol. 15, no. 1,
pp. 1-14, 2025.

[22]A. Amouri et al., “Enhancing Intrusion Detection in
IoT Environments: An Advanced Ensemble Approach
Using Kolmogorov-Arnold Networks,” arXiv preprint
arXiv:2405.07123, 2024.

[23]F. S. Alsubaei et al., “Smart deep learning model for
enhanced IoT intrusion detection,” Sci. Rep., vol. 15,
pp. 1-13, 2025.

[24]M. A. Hossain et al., “Ensuring network security with
a robust intrusion detection system,” Future Gener.
Comput. Syst., vol. 141, pp. 78-89, 2023.

[25]V. Z. Mohale et al., “Evaluating machine learning-
based intrusion detection systems: Comparative
performance analysis,” Front. Comput. Sci., vol. 7, pp.
1-12, 2025.

[26]S. Psychogyios et al., “Deep Learning for Intrusion
Detection Systems (IDSs) in ...,” Future Internet, vol.
16, no. 3,2024. MDPI

[27]E. C. P. Neto, “Deep learning for intrusion detection
in emerging ...,” Intell. Serv. & Appl., 2025.
SpringerLink

SMART MOVES JOURNAL IJOSCIENCE

Volume 11, Issue 10, October 2025

[28]H. M. Rai et al., “LuNet: An optimized LSTM-based
deep learning model for anomaly detection,” Sci. Rep.,
2025. Nature

[29]E. Li, “SAFE: Masked autoencoder based self-
supervised framework for IDS,” arXiv:2502.07119,
2025. arXiv

[30]1K. Harshdeep, “DeepTransIDS: Transformer-Based
Deep learning Model for IDS,” Comput. Netw. &
Security, 2025. ScienceDirect

[31]F. S. Alsubaei, “Smart deep learning model for
enhanced IoT intrusion detection,” Sci. Rep., 2025.
Nature

[32] Imtiaz, N.; Wahid, A.; Ul Abideen, S.Z.; Muhammad
Kamal, M.; Sehito, N.; Khan, S.; Virdee, B.S.;
Kouhalvandi, L.; Alibakhshikenari, M. A Deep
Learning-Based Approach for the Detection of
Various Internet of Things Intrusion Attacks Through
Optical Networks. Photonics 2025, 12, 35.
https://doi.org/10.3390/photonics12010035

[33] Vikrant Sharma “Hybrid CapsNet + BiLSTM for
IDS,” preprint / conference, 2025. ResearchGate

[34]B. A. Manjunatha, “A network intrusion detection
framework on sparse deep autoencoders (SDDA),”
Soft Comput., 2024. SpringerLink

[35]K. A. Alaghbari, “Deep Autoencoder-Based
Integrated Model for Anomaly Detection,” Security,
MDPI, 2023. MDPI

[36]1. Koukoulis, “Self-Supervised Transformer-based
Contrastive Learning for IDS,” arXiv:2505.08816,
2025. arXiv

[37]F. Ullah, “IDS-INT: Intrusion detection system using
transformer-based transfer learning for imbalanced
network traffic,” Comput. Netw. J., 2024.
ScienceDirect

[38] A. Gueriani, H. Kheddar and A. C. Mazari,
"Enhancing [oT Security with CNN and LSTM-Based
Intrusion Detection Systems," 2024 6th International
Conference on Pattern Analysis and Intelligent
Systems (PAIS), EL OUED, Algeria, 2024, pp. 1-7,
doi: 10.1109/PAIS62114.2024.10541178.

[39]Qazi, E.U.H.; Faheem, M.H.; Zia, T. HDLNIDS:
Hybrid Deep-Learning-Based Network Intrusion
Detection  System. Appl.  Sci. 2023, 13,  4921.
https://doi.org/10.3390/app 13084921 “

[40] Richard Kimanzi, Peter Kimanga, Dedan
Cherori, Patrick K. Gikunda “Deep Learning
Algorithms Used in Intrusion Detection” (review),
arXiv, 2024. arXiv

[411M. A. Gulbarga, “Denial of Service (DoS)
Identification Using Auto Encoder,” Preprints, 2025.
Preprints

[42]M. A. Jahin, “GNN approaches for network intrusion
detection,” arXiv:2503.00961, 2025. arXiv

[43]C. Zhang, “Research on Intrusion Detection Method
Based on Transformer,” Sensors, MDPI, 2025.



https://ijellh.com/index.php/OJS/index
https://ijellh.com/index.php/OJS/index
https://ijoscience.com/index.php/ojsscience/issue/view/118
https://www.mdpi.com/1999-5903/16/3/73?utm_source=chatgpt.com
https://link.springer.com/article/10.1007/s10462-025-11346-z?utm_source=chatgpt.com
https://www.nature.com/articles/s41598-025-85248-z?utm_source=chatgpt.com
https://arxiv.org/pdf/2502.07119?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S259012302500903X?utm_source=chatgpt.com
https://www.nature.com/articles/s41598-025-06363-5?utm_source=chatgpt.com
https://doi.org/10.3390/photonics12010035
https://www.researchgate.net/profile/Vikrant-Sharma-9?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/389144460_Improving_Intrusion_Detection_with_Hybrid_Deep_Learning_Models_A_Study_on_CIC-IDS2017_UNSW-NB15_and_KDD_CUP_99?utm_source=chatgpt.com
https://link.springer.com/article/10.1007/s00500-023-09408-x?utm_source=chatgpt.com
https://www.mdpi.com/2624-831X/4/3/16?utm_source=chatgpt.com
https://arxiv.org/pdf/2505.08816?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S2352864823000640?utm_source=chatgpt.com
https://arxiv.org/search/cs?searchtype=author&query=Kimanzi,+R
https://arxiv.org/search/cs?searchtype=author&query=Kimanga,+P
https://arxiv.org/search/cs?searchtype=author&query=Cherori,+D
https://arxiv.org/search/cs?searchtype=author&query=Cherori,+D
https://arxiv.org/search/cs?searchtype=author&query=Gikunda,+P+K
https://www.arxiv.org/pdf/2402.17020?utm_source=chatgpt.com
https://www.preprints.org/manuscript/202503.1704/v1?utm_source=chatgpt.com
https://www.arxiv.org/pdf/2503.00961?utm_source=chatgpt.com

