
IJO-SCIENCE                                                               ISSN NO: 2455-0108                                            VOL. 3, ISSUE 3, MARCH 2017 

 

DOI: https://doi.org/10.24113/ijoscience.v3i3.60 

www.ijoscience.com                            1 

Plagiarism Detection Framework: A Technique 

for Detecting Source Code Plagiarism 

Ankur Nagaich 

M.Tech Scholar 

Department of ECE 

Shri Ram College of Engineering and 

Management 

Gwalior, M.P., India 

ankurnagaich1@gmail.com 

Anuj Bhargava 

Professor 

Department of ECE 

Shri Ram College of Engineering and 

Management 

Gwalior, M.P., India 

medc.mtech13@gmail.com 

Prashant Badal 

Professor 

Department of ECE 

Shri Ram College of Engineering and 

Management 

Gwalior, M.P., India 

medc.mtech13@gmail.com 

  

Abstract— Academic dishonesty is a universal problem. 

The educational community across the world is facing 

the increasing problem of plagiarism. This widespread 

problem has motivated the need of an efficient, robust 

and fast detection procedure that is difficult to be 

achieved manually. Detecting duplicated text among 

natural language artifacts is a well-documented task. 

However, performing similar analysis on source code 

presents unique problems. Source-code plagiarism 

detection in programming, concerns the identification of 

source-code files that contain similar and/or identical 

source-code fragments. In this paper, a brief discussion 

of source code Plagiarism is presented as well as 

comparative study of the application of various 

techniques in textual similarity processing on source 

code.  

Keywords—Source-Code, Programming Language, 

Plagiarism Detection, Textual Similarity; 

I. INTRODUCTION 

Academic dishonesty is a serious issue that may result in 

severe consequences.  Notably, among a number of offenses, 

plagiarism is given specific attention. The term plagiarism 

refers to the appropriation of, buying, receiving as a gift, or 

obtaining by any means material that is attributable in whole 

or in part to another source, including words, ideas, 

illustrations, structure, computer code, etc. As numerous 

tools exist for automated plagiarism detection (PD) for 

natural language text, institutions often include plagiarism 

filters as part of the assignment submission process. The 

abstract nature of computer source code, however, limits the 

feasibility of applying such tools to computational artifacts 

[1]. Although programming languages have notoriously rigid 

syntax specifications to negate possible ambiguities in 

program semantics, other features, such as arbitrary identifier 

names, variable whitespace, and nonlinear sequencing of 

code, present difficulties in textual similarity analysis unique 

to program source code. 

Plagiarism of source-code is a growing problem due 

to the growth of source-code repositories, and digital 

documents found on the Internet. Plagiarism is considered as 

one of the most severe problems in academia, due to the 

availability of source-code found on-line and also due to 

sharing of source-code solutions among students. Essentially, 

plagiarism in computer programs occurs when a person 

reuses source code authored by someone else and fails to 

acknowledge to author in [1]. Plagiarism detection in 

software programs, concerns the identification of source-

code files that contain similar and/or identical source-code 

fragments. When two programs have been written for 

solving the same problem in the same programming 

language, it is very likely that these source code solutions 

will contain code which is similar. For this reason, ample 

consideration and scrutiny must take place prior to 

classifying two programs as similar. Importantly, within 

plagiarized files, similarity does not occur by coincidence; 

the similar source-code fragments must share source-code 

similarity which is significant enough to classify the two 

programs as similar [2]. This particularly applies to student 

solutions, where a programming problem is assigned to a 

class of students who are required to provide their solution 

written in a particular programming language.  

Hence, the challenge in plagiarism detection 

systems is to retrieve files which have significant code, and 

not to overwhelmingly detect files which contain several 

small and insignificant fragments occurring in several files 

(this is considered as noise in the data), as this will add the 

extra burden of time on the academic, searching through a 

large number of files to detect the ones which contain proof 

of plagiarism. Similar source-code fragments which are 

common across many files, essentially add noise to the 

problem of plagiarism detection [3]. 

In section II, we review different techniques of 

source code plagiarism detection. Section III discusses about 

some existing techniques for source code plagiarism 



IJO-SCIENCE                                                               ISSN NO: 2455-0108                                            VOL. 3, ISSUE 3, MARCH 2017 

www.ijoscience.com                            2 

detection. In Section IV, the plagiarism detection framework 

is proposed. Our discussion and findings are summarized and 

the paper is concluded in section V. 

II. RELATED WORK 

The concerns about source code plagiarism increasingly rose 

since 1977. The assessment of students’ programming 

submissions has an important effect on the whole computing 

educational procedure. It is of a great importance to evaluate 

the programming skills of each student, but the evaluation 

results become misleading and unreal due to the plagiarism 

problem. One of the successful policies to prevent and 

decrease this problem is plagiarism detection. Manual 

detection was found to be inefficient but it is effort and time 

consuming (evaluating n programs requires O(n2) cost). 

Hence, an automated plagiarism detection system becomes 

essential, which lead to the emergence of a series of 

plagiarism detection systems started since mid-1970s, [3, 4]. 

Parker and Hamblen, [1], defined plagiarism in 

software as: “a program which has been produced from 

another program with a small number of routine 

transformations”. The most challenging aspect in code-

plagiarism detection is the techniques that the implicated 

students tend to use to disguise the copied code in order to 

mislead the grader. 

The Running Karp-Rabin Greedy-String-Tiling 

algorithm (RKR-GST) is a well-known token matching 

algorithm developed initially within the YAP3 plagiarism 

detection tool [2]. JPlag, [4], A Token-based system that is 

freely available on the Internet for academic use. It supports 

four different programming languages; Java, C, C++ and 

scheme and it is platform independent. It output the 

similarity scale between each pair of programs in the dataset. 

The major limitation of JPlag is that it requires parsing the 

dataset; if a program fail to be parsed it will be omitted from 

the dataset. 

MOSS (Measure of Software Similarity), [5], A free 

available plagiarism detection system for academic usage 

only. MOSS supports eight different programming languages 

and two platforms; UNIX and Windows. It uses a string 

matching algorithm to divide the source-code programs into 

k-grams, hash them, select a subset of these hashes as 

fingerprints and finally compare these fingerprints. 

Arwin, [6], lists the most common disguises; which 

are changing comments, changing formatting, changing 

identifiers, changing the order of operands in expressions, 

changing data types, replacing expressions by equivalents, 

adding redundant statements, changing the order of time-

independent statements, changing the structure of iteration 

statements, changing the structure of selection statements, 

replacing procedure calls by the procedure body, introducing 

no structured statements, combining original and copied 

program fragments and the translation of source code from 

one language to another. 

Kustanto and Liem [7] proposed a tool for detecting 

source-code plagiarism among programs written in the LISP 

and Pascal programming languages. Their approach is a 

token-based approach which essentially comprises of two 

steps: firstly, it parses the source code and transforms it into 

tokens, and thereafter compares each pair of token strings 

obtained in the first step using the RRKRGST algorithm. 

More recently, Muddu et al. [9] propose a token 

representation approach for programs written in the Java 

programming language, and then use the RKRGST 

algorithm to detect code similarity. They compared their 

approach to other plagiarism detection tools, namely the 

Copy Paste Detector (CPD). One of the problems 

encountered is that files must parse to be included in the 

comparison for plagiarism, and this can cause similar files 

that were not parsed to be missed. Other hybrid approaches 

include that of Ajmal [10] who proposed a source-code 

plagiarism detection system which also utilizes a greedy 

string tiling algorithm. 

However, Fuzzy logic approaches have been 

successfully applied to cluster source-code for the recovery 

of source-code design patterns, source code mining, to assess 

similarity within program. Samples, to derive rules in order 

to detect security defects in programs, to find traceability 

links between reports and source-code. Giovanni Acampora 

and Georgina Cosma [11], proposes a novel Fuzzy-based 

approach to source-code plagiarism detection, based on 

Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference 

System (ANFIS). 

III. EXISTING SOURCE CODE PLAGIARISM 

DETECTORS 

Source code plagiarism or it known as programming 

plagiarisms typically done by students in universities and 

colleges is outlined act or trial to use, reuse, convert and 

modify or copy the entire or the a part of the source code 

written by someone else and utilized in your programming 

while not citation to the owners. Source code detection 

primarily needs human intervention if they use Manual or 

automatic source code plagiarism detection to make a 

decision or to work out whether or not the similarity because 

of the plagiarism or not. Manual detection of source code 

during a massive number of student homework’s or project 

it's thus troublesome and desires highly effort and stronger 

memory, it appears that impossible for a big number of 

sources. Plagiarism detection system or algorithms utilized 

in source-code similarity detection are often classifies 



IJO-SCIENCE                                                               ISSN NO: 2455-0108                                            VOL. 3, ISSUE 3, MARCH 2017 

www.ijoscience.com                            3 

according to Roy and Cordy [12] are often classified as 

based on either: 

• Strings: Search for precise textual matches of segments, 

as an example five-word runs. Fast, however are often 

confused by renaming identifiers. 

• Tokens: Like strings, however using a lexer to convert 

the program into tokens 1st. This discards whitespace, 

comments, and identifier names, making the system 

more robust to easy text replacements. Most academic 

plagiarism detection systems work on this level, using 

completely different algorithms to measure the 

similarity between token sequences. 

• Parse Trees - build and compare parse trees. this 

permits higher-level similarities to be detected. As an 

example, tree comparison will normalize conditional 

statements, and find equivalent constructs as just like 

each other. 

• Program Dependency Graphs (PDGs) - a PDG captures 

the actual flow of control in a program, and permits a 

lot of higher-level equivalences to be placed, at a larger 

expense in quality and calculation time 

• Metrics - metrics capture ’scores’ of code segments 

according to certain criteria; as an example, “the variety 

of loops and conditionals”, or “the variety of different 

variables used”. Metrics are easy to calculate and may 

be compared quickly, however may also cause false 

positives: 2 fragments with identical scores on a set of 

metrics could do entirely different things. 

• Hybrid approaches - as an example, parse trees + suffix 

trees will combine the detection capability of parse 

trees with the speed afforded by suffix trees, a sort of 

string-matching knowledge structure”. 

There are many methods developed by researcher for source 

code plagiarism detection as discussed below: 

A. SIM 

SIM is employed to detect plagiarism of code 

written in Java, C, Pascal, Modula-2, Lisp, Miranda [13]. 

SIM is additionally used to check similarity between plain 

text files. SIM converts the 6 source code into strings of 

token and so compare these strings by using dynamic 

programming string alignment technique. This system is 

additionally used in DNA string matching. The alignment is 

incredibly expensive and exhaustive computationally for all 

applications as a result of for large code repositories SIM 

isn't scalable. The source code of SIM is available publicly 

however it's no more actively supported. 

B. MOSS 

MOSS is accessible free to use in academics and it's 

accessible as an online service .MOSS support ADA 

programs, Java, C, C++, plain text and Pascal [14]. At a 

similar time moss conjointly support UNIX system OS and 

windows operating systems. First of all MOSS convert 

source code into tokens then use robust winnowing 

algorithm. Robust winnowing algorithm is introduced by 

Schleimer et al. however the internal detail of operating of 

this formula is confidential. This algorithm takes the 

document fingerprints by choosing a set of token hashes. 

Within the comparison method of set of files, “MOSS creates 

an inverted index to map document fingerprints to 

documents and their positions at intervals every document. 

Next, every program file is employed as a query against this 

index, returning a list of documents within the collection 

having fingerprints in common with the query.” the amount 

of matching fingerprints of every pair of document within the 

set of files is that the results of MOSS. MOSS sort these 

results and show highest-score matches to user. 

C. Plague 

One of the earliest structure-oriented systems is 

Plague. Plague solely support programs written in C [15]. 

This tool works in many steps. At the very beginning, source 

code is regenerate into structure profiles. When this Plague 

uses Heckel algorithmic program to check generated 

structure profiles of first step. The algorithm is essentially 

designed for plain text files and it's introduced by Paul 

Heckel. Plague returns ends up in list and so use an 

interpreter to process this list to point out results in the way, 

in order that common user can recognize it easily. 

D. JPlag 

JPlag is offered publicly as free accessible service. 

JPlag may be accustomed check plagiarism of source code 

written in C, C++ and Java [16]. We tend to gave a directory 

of programs as input in JPlag. Initial of all source code 

within the directory is parsed so remodeled into token 

strings. While in process of transformation, JPlag compare 

these strings by using Running Karp-Rabin Greedy String 

tiling (RKR-RGST) rule. The comparison result then shown 

in hypertext markup language file, which may be visited by 

using any browser. Within the hypertext markup language 

file of results main page contains pairs of programs that are 

assume to be plagiarized. 

E. PDE4Java 

Plagiarism Detection Engine for Java (PDE4Java) 

detects code-plagiarism by applying data processing 

techniques. The engine consists of 3 main phases; Java 

tokenization, similarity measurement and cluster. It's an 

elective default tokeniser that creates it versatile to be used 

with nearly any programming language. The system provides 



IJO-SCIENCE                                                               ISSN NO: 2455-0108                                            VOL. 3, ISSUE 3, MARCH 2017 

www.ijoscience.com                            4 

a visualizing illustration for every cluster besides the textual 

representation [17]. 

IV. PLAGIARISM DETECTOR FRAMEWORK 

This section introduces an innovative computational 

intelligence framework for the purpose of analyzing source-

code in the context of source-code plagiarism detection. The 

Plagiarism detection framework consists of two phases i.e. 

learning phase and detection phase as shown in figure 1. 

 

Figure 1: Plagiarism detection framework 

The learning phase consists of preprocessing, feature 

extraction and classifier module. The purpose of the 

plagiarism preprocessing module is to pre-process the 

source-code files in such way that it removes unnecessary 

and meaningless terms and characters in order to reduce the 

size of the data to more efficiently capture the semantic 

representation of each source-code file. This module 

tokenize, process of breaking a stream of text up into words, 

called tokens. Thereafter the following pre-processing 

parameters are also applied: conversion of upper-case letters 

to lower case, removing terms that occur in one file because 

such terms hold no information about relationships among 

terms across files, removing terms solely composed of 

numeric characters, removing syntactical tokens (e.g. semi-

colons, colons), removing terms consisting of a single letter. 

The following source-code specific pre-processing 

parameters are also applied: removal of comments, removal 

of language reserved terms, removal of obfuscation 

parameters found in terms, obfuscators that join two words 

together are removed such that the two words are treated as a 

single word. 

In dimension reduction module, the proposed framework 

reduce the database size and hence space complexity by 

removing noise and irrelevant data. Then in detection 

module, the proposed framework detects the new source 

code to analyze degree of similarity. Different classifier can 

be used to determine degree of similarity such as fuzzy logic 

based classifier, adaptive Neuro based classifier, Fuzzy C-

Means, Self-Organizing Map, hybrid classifier, etc. 

V. CONCLUSION 

Plagiarism in source-code submissions is a serious problem 

that has motivated researchers to find effective automated 

detectors. This paper proposed a plagiarism detection engine 

for source-code files. Source-code plagiarism detection in 

programming, concerns the identification of source-code 

files that contain similar and/or identical source-code 

fragments. Mainly, the system computes and displays the 

similarity value between each pair of programs in a dataset. 

This paper proposes an approach to cluster source-code for 

detecting clusters which could contain similar and hence 

plagiarized files. The proposed approach appears to 

overcome the several problems currently encountered by 

plagiarism detection algorithms and many of the existing 

algorithms and tools. To detect source code plagiarism, the 

proposed approach may optimize the speed the detection 

process as well as the accuracy of finding degree of 

plagiarism. 

REFERENCES 

[1] A. Parker and J. Hamblen. Computer algorithms for 

plagiarism detection. IEEE Transactions on Education, 

32(2):94–99, 1989. 

[2] Michael J. Wise. YAP3: Improved detection of 

similarities in computer program and other texts. ACM, 

SIGCSE, 28:130–134, 1996. 

[3] Fintan Culwin, Anna MacLeod, and Thomas Lancaster. 

Source code plagiarism in UK HE computing schools, 

issues, attitudes and tools. Technical report, South Bank 

University (SBU) SCISM Technical Report, 2001. 

[4] Michael Philippsen Lutz Prechelt, Guido Malpohl. 

Finding plagiarism among a set of programs with JPlag. 

Journal of Universal Computer Science, 8(11):1016–

1038, 2002. 

[5] Alex Aiken. Moss: A system for detecting software 

plagiarism, 2005. 

[6] Christian Arwin and S.M.M. Tahaghoghi. Plagiarism 

detection across programming languages. Proceedings 

of the 29th Australasian Computer Science Conference, 

48:277–286, 2006. 

[7] C. Kustanto and I. Liem, “Automatic source code 

plagiarism detection,” in Software Engineering, 

Artificial Intelligences, Networking and 

Parallel/Distributed Computing, 2009. SNPD ’09. 10th 

ACIS International Conference on, May 2009, pp. 481–

486. 

[8] C. G. and J. M., “An approach to source-code plagiarism 

detection and investigation using latent semantic 

analysis,” Computers, IEEE Transactions on, vol. 61, 

no. 3, pp. 379–394, March 2012. 

[9] B. Muddu, A. Asadullah, and V. Bhat, “Cpdp: A robust 

technique for plagiarism detection in source code,” in 



IJO-SCIENCE                                                               ISSN NO: 2455-0108                                            VOL. 3, ISSUE 3, MARCH 2017 

www.ijoscience.com                            5 

Software Clones (IWSC), 7th International Workshop 

on, May 2013, pp. 39–45. 

[10] O. Ajmal, M. Missen, T. Hashmat, M. Moosa, and T. 

Ali, “Eplag: A two layer source code plagiarism 

detection system,” in Digital Information Management 

(ICDIM), 2013 Eighth International Conference on, 

Sept, 2013, pp. 256–261. 

[11] Giovanni Acampora and Georgina Cosma, “A Fuzzy-

based Approach to Programming Language Independent 

Source-Code Plagiarism Detection”, IEEE, 2015. 

[12] http://www.cs.queensu.ca/queensu.ca/TechReports/Repo

rts/2007-541.pdf. 

[13] David Gitchell 81 Nicholas Tran, “Sim: A Utility For 

Detecting Similarity in Computer Programs”, ACM, 

1999, pp. 266-270. 

[14] Aiken A Moss. A system for detecting software 

plagiarism, 

http://www.cs.berkeley.edu/~aiken/moss.html. 

[15] M. J. Wise, “Detection of Similarities in Student 

Programs: YAP'ing may be Preferable to Plague'ing,” 

ACM SIGSCE, 2002. 

[16] Lutz Prechelt, Guido Malpohl, Michael Phlippsen, 

“JPlag: Finding plagiarisms among a set of programs”, 

Technical Report, University of Karlsruhe, Germany, 

2000. 

[17] Jadalla, A. Elnagar, “A. PDE4Java: Plagiarism 

Detection Engine for Java sourcecode: a clustering 

approach”, IJBIDM, vol. 3, issue 2, 2008, pp. 121-135. 

 


