1JO-SCIENCE

ISSN NO: 2455-0108

VOL. 3, ISSUE 3, MARCH 2017

DOI: https://doi.org/10.24113/ijoscience.v3i3.60

Plagiarism Detection Framework: A Technique
for Detecting Source Code Plagiarism

Ankur Nagaich Anuj Bhargava Prashant Badal
M.Tech Scholar Professor Professor
Department of ECE Department of ECE Department of ECE
Shri Ram College of Engineeringand ~ Shri Ram College of Engineeringand Shri Ram College of Engineering and
Management Management Management

Gwalior, M.P., India
ankurnagaichl@gmail.com

Abstract— Academic dishonesty is a universal problem.
The educational community across the world is facing
the increasing problem of plagiarism. This widespread
problem has motivated the need of an efficient, robust
and fast detection procedure that is difficult to be
achieved manually. Detecting duplicated text among
natural language artifacts is a well-documented task.
However, performing similar analysis on source code
presents unique problems. Source-code plagiarism
detection in programming, concerns the identification of
source-code files that contain similar and/or identical
source-code fragments. In this paper, a brief discussion
of source code Plagiarism is presented as well as
comparative study of the application of various
techniques in textual similarity processing on source
code.

Keywords—Source-Code, Programming
Plagiarism Detection, Textual Similarity;

Language,

I. INTRODUCTION

Academic dishonesty is a serious issue that may result in
severe consequences. Notably, among a number of offenses,
plagiarism is given specific attention. The term plagiarism
refers to the appropriation of, buying, receiving as a gift, or
obtaining by any means material that is attributable in whole
or in part to another source, including words, ideas,
illustrations, structure, computer code, etc. As numerous
tools exist for automated plagiarism detection (PD) for
natural language text, institutions often include plagiarism
filters as part of the assignment submission process. The
abstract nature of computer source code, however, limits the
feasibility of applying such tools to computational artifacts
[1]. Although programming languages have notoriously rigid
syntax specifications to negate possible ambiguities in
program semantics, other features, such as arbitrary identifier
names, variable whitespace, and nonlinear sequencing of
code, present difficulties in textual similarity analysis unique
to program source code.

www.ijoscience.com

Gwalior, M.P., India
medc.mtech13@gmail.com

Gwalior, M.P., India
medc.mtech13@gmail.com

Plagiarism of source-code is a growing problem due
to the growth of source-code repositories, and digital
documents found on the Internet. Plagiarism is considered as
one of the most severe problems in academia, due to the
availability of source-code found on-line and also due to
sharing of source-code solutions among students. Essentially,
plagiarism in computer programs occurs when a person
reuses source code authored by someone else and fails to
acknowledge to author in [1]. Plagiarism detection in
software programs, concerns the identification of source-
code files that contain similar and/or identical source-code
fragments. When two programs have been written for
solving the same problem in the same programming
language, it is very likely that these source code solutions
will contain code which is similar. For this reason, ample
consideration and scrutiny must take place prior to
classifying two programs as similar. Importantly, within
plagiarized files, similarity does not occur by coincidence;
the similar source-code fragments must share source-code
similarity which is significant enough to classify the two
programs as similar [2]. This particularly applies to student
solutions, where a programming problem is assigned to a
class of students who are required to provide their solution
written in a particular programming language.

Hence, the challenge in plagiarism detection
systems is to retrieve files which have significant code, and
not to overwhelmingly detect files which contain several
small and insignificant fragments occurring in several files
(this is considered as noise in the data), as this will add the
extra burden of time on the academic, searching through a
large number of files to detect the ones which contain proof
of plagiarism. Similar source-code fragments which are
common across many files, essentially add noise to the
problem of plagiarism detection [3].

In section Il, we review different techniques of
source code plagiarism detection. Section 1l discusses about
some existing techniques for source code plagiarism

1JO-SCIENCE

detection. In Section 1V, the plagiarism detection framework
is proposed. Our discussion and findings are summarized and
the paper is concluded in section V.

Il. RELATED WORK

The concerns about source code plagiarism increasingly rose
since 1977. The assessment of students’ programming
submissions has an important effect on the whole computing
educational procedure. It is of a great importance to evaluate
the programming skills of each student, but the evaluation
results become misleading and unreal due to the plagiarism
problem. One of the successful policies to prevent and
decrease this problem is plagiarism detection. Manual
detection was found to be inefficient but it is effort and time
consuming (evaluating n programs requires O(n2) cost).
Hence, an automated plagiarism detection system becomes
essential, which lead to the emergence of a series of
plagiarism detection systems started since mid-1970s, [3, 4].

Parker and Hamblen, [1], defined plagiarism in
software as: “a program which has been produced from
another program with a small number of routine
transformations”. The most challenging aspect in code-
plagiarism detection is the techniques that the implicated
students tend to use to disguise the copied code in order to
mislead the grader.

The Running Karp-Rabin Greedy-String-Tiling
algorithm (RKR-GST) is a well-known token matching
algorithm developed initially within the YAP3 plagiarism
detection tool [2]. JPlag, [4], A Token-based system that is
freely available on the Internet for academic use. It supports
four different programming languages; Java, C, C++ and
scheme and it is platform independent. It output the
similarity scale between each pair of programs in the dataset.
The major limitation of JPlag is that it requires parsing the
dataset; if a program fail to be parsed it will be omitted from
the dataset.

MOSS (Measure of Software Similarity), [5], A free
available plagiarism detection system for academic usage
only. MOSS supports eight different programming languages
and two platforms; UNIX and Windows. It uses a string
matching algorithm to divide the source-code programs into
k-grams, hash them, select a subset of these hashes as
fingerprints and finally compare these fingerprints.

Arwin, [6], lists the most common disguises; which
are changing comments, changing formatting, changing
identifiers, changing the order of operands in expressions,
changing data types, replacing expressions by equivalents,
adding redundant statements, changing the order of time-
independent statements, changing the structure of iteration
statements, changing the structure of selection statements,

www.ijoscience.com

ISSN NO: 2455-0108

VOL. 3, ISSUE 3, MARCH 2017

replacing procedure calls by the procedure body, introducing
no structured statements, combining original and copied
program fragments and the translation of source code from
one language to another.

Kustanto and Liem [7] proposed a tool for detecting
source-code plagiarism among programs written in the LISP
and Pascal programming languages. Their approach is a
token-based approach which essentially comprises of two
steps: firstly, it parses the source code and transforms it into
tokens, and thereafter compares each pair of token strings
obtained in the first step using the RRKRGST algorithm.

More recently, Muddu et al. [9] propose a token
representation approach for programs written in the Java
programming language, and then use the RKRGST
algorithm to detect code similarity. They compared their
approach to other plagiarism detection tools, namely the
Copy Paste Detector (CPD). One of the problems
encountered is that files must parse to be included in the
comparison for plagiarism, and this can cause similar files
that were not parsed to be missed. Other hybrid approaches
include that of Ajmal [10] who proposed a source-code
plagiarism detection system which also utilizes a greedy
string tiling algorithm.

However, Fuzzy logic approaches have been
successfully applied to cluster source-code for the recovery
of source-code design patterns, source code mining, to assess
similarity within program. Samples, to derive rules in order
to detect security defects in programs, to find traceability
links between reports and source-code. Giovanni Acampora
and Georgina Cosma [11], proposes a novel Fuzzy-based
approach to source-code plagiarism detection, based on
Fuzzy C-Means and the Adaptive-Neuro Fuzzy Inference
System (ANFIS).

I11. EXISTING SOURCE CODE PLAGIARISM
DETECTORS

Source code plagiarism or it known as programming
plagiarisms typically done by students in universities and
colleges is outlined act or trial to use, reuse, convert and
modify or copy the entire or the a part of the source code
written by someone else and utilized in your programming
while not citation to the owners. Source code detection
primarily needs human intervention if they use Manual or
automatic source code plagiarism detection to make a
decision or to work out whether or not the similarity because
of the plagiarism or not. Manual detection of source code
during a massive number of student homework’s or project
it's thus troublesome and desires highly effort and stronger
memory, it appears that impossible for a big number of
sources. Plagiarism detection system or algorithms utilized
in source-code similarity detection are often classifies

1JO-SCIENCE

according to Roy and Cordy [12] are often classified as
based on either:

e Strings: Search for precise textual matches of segments,
as an example five-word runs. Fast, however are often
confused by renaming identifiers.

e Tokens: Like strings, however using a lexer to convert
the program into tokens 1st. This discards whitespace,
comments, and identifier names, making the system
more robust to easy text replacements. Most academic
plagiarism detection systems work on this level, using
completely different algorithms to measure the
similarity between token sequences.

e Parse Trees - build and compare parse trees. this
permits higher-level similarities to be detected. As an
example, tree comparison will normalize conditional
statements, and find equivalent constructs as just like
each other.

e Program Dependency Graphs (PDGs) - a PDG captures
the actual flow of control in a program, and permits a
lot of higher-level equivalences to be placed, at a larger
expense in quality and calculation time

e Metrics - metrics capture ’scores’ of code segments
according to certain criteria; as an example, “the variety
of loops and conditionals”, or “the variety of different
variables used”. Metrics are easy to calculate and may
be compared quickly, however may also cause false
positives: 2 fragments with identical scores on a set of
metrics could do entirely different things.

e Hybrid approaches - as an example, parse trees + suffix
trees will combine the detection capability of parse
trees with the speed afforded by suffix trees, a sort of
string-matching knowledge structure”.

There are many methods developed by researcher for source
code plagiarism detection as discussed below:

A. SIM

SIM is employed to detect plagiarism of code
written in Java, C, Pascal, Modula-2, Lisp, Miranda [13].
SIM is additionally used to check similarity between plain
text files. SIM converts the 6 source code into strings of
token and so compare these strings by using dynamic
programming string alignment technique. This system is
additionally used in DNA string matching. The alignment is
incredibly expensive and exhaustive computationally for all
applications as a result of for large code repositories SIM
isn't scalable. The source code of SIM is available publicly
however it's no more actively supported.

B. MOSS

www.ijoscience.com

ISSN NO: 2455-0108

VOL. 3, ISSUE 3, MARCH 2017

MOSS is accessible free to use in academics and it's
accessible as an online service .MOSS support ADA
programs, Java, C, C++, plain text and Pascal [14]. At a
similar time moss conjointly support UNIX system OS and
windows operating systems. First of all MOSS convert
source code into tokens then use robust winnowing
algorithm. Robust winnowing algorithm is introduced by
Schleimer et al. however the internal detail of operating of
this formula is confidential. This algorithm takes the
document fingerprints by choosing a set of token hashes.
Within the comparison method of set of files, “MOSS creates
an inverted index to map document fingerprints to
documents and their positions at intervals every document.
Next, every program file is employed as a query against this
index, returning a list of documents within the collection
having fingerprints in common with the query.” the amount
of matching fingerprints of every pair of document within the
set of files is that the results of MOSS. MOSS sort these
results and show highest-score matches to user.

C. Plague

One of the earliest structure-oriented systems is
Plague. Plague solely support programs written in C [15].
This tool works in many steps. At the very beginning, source
code is regenerate into structure profiles. When this Plague
uses Heckel algorithmic program to check generated
structure profiles of first step. The algorithm is essentially
designed for plain text files and it's introduced by Paul
Heckel. Plague returns ends up in list and so use an
interpreter to process this list to point out results in the way,
in order that common user can recognize it easily.

D. JPlag

JPlag is offered publicly as free accessible service.
JPlag may be accustomed check plagiarism of source code
written in C, C++ and Java [16]. We tend to gave a directory
of programs as input in JPlag. Initial of all source code
within the directory is parsed so remodeled into token
strings. While in process of transformation, JPlag compare
these strings by using Running Karp-Rabin Greedy String
tiling (RKR-RGST) rule. The comparison result then shown
in hypertext markup language file, which may be visited by
using any browser. Within the hypertext markup language
file of results main page contains pairs of programs that are
assume to be plagiarized.

E. PDE4Java

Plagiarism Detection Engine for Java (PDE4Java)
detects code-plagiarism by applying data processing
techniques. The engine consists of 3 main phases; Java
tokenization, similarity measurement and cluster. It's an
elective default tokeniser that creates it versatile to be used
with nearly any programming language. The system provides

1JO-SCIENCE

a visualizing illustration for every cluster besides the textual
representation [17].

IV. PLAGIARISM DETECTOR FRAMEWORK

This section introduces an innovative computational
intelligence framework for the purpose of analyzing source-
code in the context of source-code plagiarism detection. The
Plagiarism detection framework consists of two phases i.e.
learning phase and detection phase as shown in figure 1.

LEARNING MODULE

Preprocessing Dimension ||
3 =3
Module Reduction

Feature
Extraction

DETECTION MODULE

Feature
Extraction

New Source

o Classifier
Code

—

Degree of
Plagiarism

Figure 1: Plagiarism detection framework

The learning phase consists of preprocessing, feature
extraction and classifier module. The purpose of the
plagiarism preprocessing module is to pre-process the
source-code files in such way that it removes unnecessary
and meaningless terms and characters in order to reduce the
size of the data to more efficiently capture the semantic
representation of each source-code file. This module
tokenize, process of breaking a stream of text up into words,
called tokens. Thereafter the following pre-processing
parameters are also applied: conversion of upper-case letters
to lower case, removing terms that occur in one file because
such terms hold no information about relationships among
terms across files, removing terms solely composed of
numeric characters, removing syntactical tokens (e.g. semi-
colons, colons), removing terms consisting of a single letter.
The following source-code specific pre-processing
parameters are also applied: removal of comments, removal
of language reserved terms, removal of obfuscation
parameters found in terms, obfuscators that join two words
together are removed such that the two words are treated as a
single word.

In dimension reduction module, the proposed framework
reduce the database size and hence space complexity by
removing noise and irrelevant data. Then in detection
module, the proposed framework detects the new source
code to analyze degree of similarity. Different classifier can
be used to determine degree of similarity such as fuzzy logic
based classifier, adaptive Neuro based classifier, Fuzzy C-
Means, Self-Organizing Map, hybrid classifier, etc.

www.ijoscience.com

ISSN NO: 2455-0108

VOL. 3, ISSUE 3, MARCH 2017

V. CONCLUSION

Plagiarism in source-code submissions is a serious problem
that has motivated researchers to find effective automated
detectors. This paper proposed a plagiarism detection engine
for source-code files. Source-code plagiarism detection in
programming, concerns the identification of source-code
files that contain similar and/or identical source-code
fragments. Mainly, the system computes and displays the
similarity value between each pair of programs in a dataset.
This paper proposes an approach to cluster source-code for
detecting clusters which could contain similar and hence
plagiarized files. The proposed approach appears to
overcome the several problems currently encountered by
plagiarism detection algorithms and many of the existing
algorithms and tools. To detect source code plagiarism, the
proposed approach may optimize the speed the detection
process as well as the accuracy of finding degree of
plagiarism.

REFERENCES

[1]1 A. Parker and J. Hamblen. Computer algorithms for
plagiarism detection. IEEE Transactions on Education,
32(2):94-99, 1989.

[21 Michael J. Wise. YAP3: Improved detection of
similarities in computer program and other texts. ACM,
SIGCSE, 28:130-134, 1996.

[3] Fintan Culwin, Anna MacLeod, and Thomas Lancaster.
Source code plagiarism in UK HE computing schools,
issues, attitudes and tools. Technical report, South Bank
University (SBU) SCISM Technical Report, 2001.

[4] Michael Philippsen Lutz Prechelt, Guido Malpohl.
Finding plagiarism among a set of programs with JPlag.
Journal of Universal Computer Science, 8(11):1016—
1038, 2002.

[5] Alex Aiken. Moss: A system for detecting software
plagiarism, 2005.

[6] Christian Arwin and S.M.M. Tahaghoghi. Plagiarism
detection across programming languages. Proceedings
of the 29th Australasian Computer Science Conference,
48:277-286, 2006.

[71 C. Kustanto and I. Liem, “Automatic source code
plagiarism detection,” in Software Engineering,
Artificial Intelligences, Networking and
Parallel/Distributed Computing, 2009. SNPD ’09. 10th
ACIS International Conference on, May 2009, pp. 481—
486.

[8] C.G.andJ. M., “An approach to source-code plagiarism
detection and investigation using latent semantic
analysis,” Computers, IEEE Transactions on, vol. 61,
no. 3, pp. 379-394, March 2012.

[9] B. Muddu, A. Asadullah, and V. Bhat, “Cpdp: A robust
technique for plagiarism detection in source code,” in

1JO-SCIENCE ISSN NO: 2455-0108 VOL. 3, ISSUE 3, MARCH 2017

Software Clones (IWSC), 7th International Workshop
on, May 2013, pp. 39-45.

[10] O. Ajmal, M. Missen, T. Hashmat, M. Moosa, and T.
Ali, “Eplag: A two layer source code plagiarism
detection system,” in Digital Information Management
(ICDIM), 2013 Eighth International Conference on,
Sept, 2013, pp. 256-261.

[11] Giovanni Acampora and Georgina Cosma, “A Fuzzy-
based Approach to Programming Language Independent
Source-Code Plagiarism Detection”, IEEE, 2015.

[12] http://www.cs.queensu.ca/queensu.ca/TechReports/Repo
rts/2007-541.pdf.

[13] David Gitchell 81 Nicholas Tran, “Sim: A Utility For
Detecting Similarity in Computer Programs”, ACM,
1999, pp. 266-270.

[14] Aiken A Moss. A system for detecting software
plagiarism,
http://www.cs.berkeley.edu/~aiken/moss.html.

[15] M. J. Wise, “Detection of Similarities in Student
Programs: YAP'ing may be Preferable to Plague'ing,”
ACM SIGSCE, 2002.

[16] Lutz Prechelt, Guido Malpohl, Michael Phlippsen,
“JPlag: Finding plagiarisms among a set of programs”,
Technical Report, University of Karlsruhe, Germany,
2000.

[17] Jadalla, A. Elnagar, “A. PDE4Java: Plagiarism
Detection Engine for Java sourcecode: a clustering
approach”, 1JBIDM, vol. 3, issue 2, 2008, pp. 121-135.

www.ijoscience.com 5

