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Abstract: This research paper delves into the transformative
role of Artificial Intelligence (Al) and the Internet of Things
(IoT) in revolutionizing disease diagnosis within smart
healthcare systems. Al, a cornerstone in computer science,
is now pivotal in healthcare, offering sophisticated
algorithms for analyzing medical data, thus aiding in
decision-making and predictions. 10T extends this capability
by enabling continuous data collection through web-enabled
devices, including wearables and implanted sensors. The
integration of Al and 10T in smart healthcare systems not
only refines medical procedures but also enhances patient
experiences and operational workflows. This paper explores
how Al-driven routines in conjunction with 10T data streams
facilitate rapid and accurate disease diagnosis, surpassing
traditional methods often limited by human biases. The
adoption of these technologies in healthcare promises to
improve diagnostic accuracy, expedite processes, and
broaden access to medical expertise, especially in remote
areas. However, challenges such as ensuring data privacy,
security, and ethical use of Al remain paramount.
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I. INTRODUCTION

Artificial Intelligence (Al) stands as a pillar in computer
science, focusing on the development of systems that
replicate human cognitive functionalities [1]. Within the
realm of healthcare, Al embodies the creation and utilization
of specialized algorithms and models. These tools are
designed to scrutinize and interpret medical data, allowing
for decision-making and predictions that align with the
expertise of healthcare professionals [2]. Such algorithms
excel at uncovering detailed patterns, relationships, and
irregularities present in extensive datasets, notably in areas
like medical imaging, genomics, and patient health records.
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Utilizing AI’s capabilities enhances the efficiency and
precision of disease diagnoses in healthcare, facilitating
prompt medical actions and the customization of treatment
strategies.

The Internet of Things (loT) refers to the web-enabled
integration of everyday items, facilitating data collection
and sharing. Within healthcare, this encompasses wearables,
tools for distant observation, and devices implanted within
patients to capture live health metrics. Such uninterrupted
data flow paints a comprehensive picture of a person's well-
being, capturing metrics like vital signs and physical
activity. By harnessing the power of loT, medical experts
can oversee patient health from afar and promptly identify
any unusual patterns.

Smart Healthcare Systems" denote the melding of
technological solutions and analytics to forge healthcare
settings that prioritize efficiency and patient focus. By
employing Al and loT, these systems refine medical
procedures, uplift patient experiences, and simplify
operational workflows. Such infrastructures have the
capability to handle mundane tasks autonomously, provide
foresight into potential patient results, and facilitate distant
oversight and control of medical conditions.
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Figure 1. Internet of Things and the new healthcare system
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A. Smart healthcare systems: revolutionizing disease
diagnosis

Smart  healthcare  infrastructures introducing
transformative changes in medical methodologies,
particularly in how diseases are identified. By amalgamating
cutting-edge tech like Al, loT, and data analysis, these
frameworks bolster the precision, rapidity, and reach of
diagnostic procedures. While conventional diagnostic
techniques can be influenced by personal human biases,
leading to inconsistency and possible inaccuracies, the
inclusion of Al-focused algorithms and devices powered by
0T grants medical professionals enhanced instruments for
arriving at well-grounded and exact diagnostic conclusions.

are

A principal advantage of intelligent healthcare
infrastructures in pinpointing diseases is their prowess in
swiftly examining extensive medical datasets. Al-driven
routines can delve into intricate data from medical visuals,
digital health logs, genetic details, and wearable tech. These
routines, adept at discerning nuanced trends and links in the
data, can help pinpoint preliminary signs of diseases that
might evade human detection. Such proactive recognition
can pave the way for prompt medical actions, which could
be instrumental in preserving lives and enhancing the health
trajectories of patients.

Moreover, intelligent healthcare infrastructures are
lightening the load for medical practitioners by taking over
specific diagnostic responsibilities. Diagnostic instruments
fortified by Al can scrutinize medical visuals, including X-
rays, MRIs, and pathology specimens, with commendable
precision. This assists radiology and pathology experts in
concentrating on intricate cases, fostering streamlined
processes and expedited diagnostic results. Plus, Al routines
can be tailored to evaluate an expansive set of diagnostic
criteria, resulting in all-encompassing evaluations that factor
in a patient's past health records, genetic leanings, and daily
living habits.

A notable benefit of intelligent healthcare infrastructures is
their role in enhancing accessibility in pinpointing diseases.
Often, geographical and financial constraints can hinder
patients from accessing niche medical insights. However,
with the advent of virtual medical consultations and distant
diagnostic capabilities championed by these systems,
individuals in far-flung locales can obtain specialist
feedback without the necessity of extensive travel.
Additionally, through wearable tech and in-home health
monitors, there's a perpetual data gathering process in place.
This lets medical professionals observe long-term health
patterns of patients and determine the best course of action
from afar.

Though the promises of intelligent healthcare infrastructures
in disease identification are immense, they're not without
hurdles. Guaranteeing the precision, clarity, and moral
application of Al routines is crucial. Thorough testing,
methodologies that make Al more interpretable, and
compliance with set regulations play pivotal roles in
fostering confidence in these systems. Moreover, the
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protection of data privacy and ensuring robust security
measures are imperative to shield confidential health data.
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Figure 2. Components of IOT healthcare [8]

B. Integrating Artificial Intelligence and Internet of
Things for Enhanced Diagnosis

Merging Artificial Intelligence (Al) with the Internet of
Things (10T) has blossomed into a game-changing approach,
reshaping numerous sectors, healthcare included. This
innovative blend offers immense potential to refine both the
precision and speed of identifying diseases. By leveraging
the deep analytical strengths of Al alongside the
instantaneous data collection of 10T, healthcare platforms
can attain newfound perspectives on patient health,
facilitating quicker and more accurate diagnostic outcomes

[9].

Al's proficiency in managing and analyzing extensive sets
of intricate data allows it to identify valuable trends and
associations often missed by conventional diagnostic
techniques. Machine learning routines in Al frameworks can
evolve by studying past medical records and acclimating to
fresh data. This equips them to discern delicate shifts in
patient information and spot preliminary indicators of health
issues. Such analytical capabilities are especially vital in
fields like medical visuals, genetic studies, and digital health
archives. In these domains, Al-enhanced routines can
swiftly dissect complex data, offering medical professionals
insightful diagnostic guidance.

Adding to Al's strengths, the Internet of Things (loT)
introduces an enhanced level of connectedness, allowing
persistent observation of patients' vital stats and behaviors.
Wearables, distant detectors, and intelligent medical tools
produce a consistent flow of immediate data, painting a
detailed picture of a person's well-being. This data deluge
equips medical experts to identify patterns, spot
irregularities, and take timely action when health declines.
Through loT-facilitated distant oversight, medical
specialists can impact care even outside the confines of
medical establishments, thus improving patient outcomes
and lightening the load on healthcare centers.

The combined force of Al and loT escalates the diagnostic
capabilities. Al routines, when fed with the relentless stream
of data from 10T sources, can adjust and progress in sync
with alterations in patient health. Such an adaptive learning
trajectory refines the precision of diagnostic frameworks
with time [10]. Moreover, melding Al-based diagnostic
instruments with 10T gadgets can hasten the detection of
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looming health concerns, paving the way for proactive
actions before the health scenarios deteriorate.

Yet, this merger isn't devoid of obstacles. Safeguarding the
confidentiality and security of delicate patient information is
of utmost importance. The linked nature of 10T gadgets
raises issues about data consistency and setting standards.
Tackling these technological and moral dilemmas is crucial
to establish a bedrock of confidence in the fusion of Al and
IoT for improved diagnostic procedures.
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Figure 3. Proposed system architecture [11]

C. Data Privacy and Security Considerations in Smart
Healthcare

In the age of intelligent healthcare, characterized by
groundbreaking technologies such as the Internet of Things
(1oT) and wearable gadgets reshaping the healthcare arena,
data privacy and security have taken center stage [13]. The
amalgamation of patient-originated data, electronic health
archives, and real-time monitoring mechanisms presents
exceptional prospects for customized and prompt healthcare
interventions. Nevertheless, the gathering, transmission, and
storage of confidential medical data within these
interconnected ecosystems pose substantial hurdles when it
comes to protecting patient privacy and upholding data
security.

A Kkey issue in data privacy within smart healthcare stems
from the vast amount and variety of data produced.
Wearable tech, sensors, and medical apparatus consistently
amass a trove of patient details, spanning vital statistics,
activity patterns, medication adherence, and individual
lifestyle choices. This data can offer invaluable perspectives
for diagnoses and therapies, yet it concurrently becomes an
attractive prospect for malicious entities looking to
capitalize on weaknesses. Consequently, it becomes
imperative to incorporate robust encryption methods and
secure communication standards to thwart unauthorized
entry and eavesdropping during data transfer [14].

Within the domain of data security, the apprehension
regarding breaches intensifies notably when confidential
medical records find their place in cloud-based systems or
are shared across multiple healthcare entities. An
infringement could potentially lead to the disclosure of
patient identities, comprehensive medical backgrounds, and
treatment schemes, carrying grave repercussions for both
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individuals and institutions. To counter these risks, the
implementation of robust access controls, multi-factor
authentication measures, and regular security assessments
emerges as crucial. These measures work to ensure that
solely authorized personnel gain entry to patient data.
Furthermore, the adoption of data minimization approaches,
where only indispensable information is collected and
maintained, aids in curtailing the potential ramifications of
a security breach.

SMART

Res e

Figure 4. Automated Healthcare [15]

Achieving equilibrium between the advantages of data
exchange and safeguarding patient confidentiality
represents a pivotal facet of data privacy in intelligent
healthcare. Collaborative endeavors involving healthcare
institutions, tech enterprises, and regulatory authorities
become indispensable in formulating universally accepted
protocols for data management and privacy procedures
within the sector. Employing clear-cut consent procedures
and open dialogue with patients regarding the utilization and
dissemination of their data can foster trust and grant
individuals the agency to make well-informed choices
regarding their health information.

Il. LITERATURE REVIEW

Mansour et. al. [21], the transformative impact of loT,
cloud computing, and Al on healthcare is discussed, leading
to the emergence of smart healthcare systems. These
systems enhance medical services, particularly disease
diagnosis. The study introduces a novel disease diagnosis
model that combines Al and loT for heart disease and
diabetes diagnosis. It involves stages like data acquisition,
preprocessing, classification, and parameter tuning. loT
devices collect data, while Al techniques aid in diagnosis.
The model uses Crow Search Optimization (CSQO) for
parameter optimization and isolation Forest (Forest) for
outlier elimination. Results show significant accuracy
improvement, with the CSO-LSTM model achieving high
accuracy for heart disease and diabetes diagnosis. This
suggests its potential as an effective diagnostic tool in smart
healthcare systems.

Amin et. al. [22], the changing landscape of healthcare,
driven by technological advancements and modern
lifestyles, is discussed. The study focuses on the role of edge
computing, 5G, and loT sensors in providing real-time
healthcare solutions while considering energy efficiency and
low latency. It explores healthcare 10T applications within

17


https://ijoscience.com/index.php/ojsscience
https://ijoscience.com/index.php/ojsscience/issue/view/94

ISSN NO: 2582-4600

edge computing, aiming to analyze existing and emerging
techniques for smart healthcare across various scenarios.
The study investigates edge intelligence for health data
analysis and acknowledges challenges like computational
complexity and security. Potential research directions are
proposed to enhance edge computing in healthcare,
ultimately improving patients' quality of life. Additionally,
the study provides an overview of 10T solutions' general use
in edge platforms for medical treatment and healthcare.

J. Qietal. [23], the rapid expansion of the Internet of Things
(10T) in healthcare is discussed, leading to a shift from
traditional hub-based systems to personalized healthcare
systems (PHS). Despite the potential of 10T in PHS, several
challenges exist, including the availability of affordable
smart medical sensors, lack of standardized loT
architectures, device diversity, complex data dimensions,
and interoperability requirements. The paper conducts a
comprehensive review of loT-enabled PHS, providing
insights into current research, enabling technologies,
applications, successful case studies, and future trends and
challenges. This review highlights both the opportunities
and obstacles in integrating loT advancements into
personalized healthcare systems.

B. Mohanta et al. [24], the integration of Artificial
Intelligence (Al) into healthcare is discussed, enabled by
smart intelligent devices and high-speed networking
techniques. This integration brings about a new era in
healthcare, characterized by technological advancements,
improved quality of life, and innovative Al-driven medical
solutions. Smart wearables equipped with advanced sensors
facilitate real-time health monitoring and disease diagnosis.
The paper also underscores the significance of Internet of
Things (IoT) devices in healthcare 4.0 and outlines the
challenges they face, including seamless data transmission,
traffic management, cost-effectiveness, and machine-to-
machine communication. The emergence of 5G
communication is considered a solution to address these
challenges, particularly for critical healthcare applications
like remote surgeries and Tactile Internet. The paper
amalgamates the key concepts of Al, 10T, and 5G
communication to conceptualize healthcare 5.0, offering a
glimpse into the future of healthcare.

K. Guo et al. [25], the focus is on the incorporation of
Internet of Things (1oT) technology in the context of smart
cities (SCs). The paper addresses challenges stemming from
the diversity of 10T devices and the vast volume of data they
generate. To tackle these challenges, a novel approach called
the Artificial Intelligence-based Semantic loT (Al-SloT)
hybrid service architecture is introduced. This architecture
aims to enhance intelligent services by facilitating seamless
connections among various devices. It leverages semantic
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and Al technologies to efficiently analyze data and make
informed decisions regarding service delivery. The paper
also provides practical use cases of the Al-SIoT architecture
and discusses the opportunities and challenges associated
with its implementation in future smart cities.

A. Darwish et al. [27], a comprehensive examination of the
fusion of Cloud Computing (CC) and the Internet of Things
(IoT) in the healthcare domain is presented. These
technologies are recognized as pivotal components of the
21st-century ICT revolution, and the paper explores the
potential impact of the CloudloT paradigm on healthcare
services, offering a foundation for innovation and
improvement. The research reviews how the integration of
CC and IoT can address a range of healthcare challenges,
including applications in smart hospitals, medication
management, and remote medical services. The novel
concept of the CloudloT-Health paradigm is introduced,
emphasizing its key integration aspects. The study assesses
existing proposals in CloudloT-Health systems, highlighting
current integration levels and challenges. Additionally, the
paper outlines the evolving research landscape, discusses
challenges, and delineates future research directions related
to the integration of CC and 10T for healthcare systems.

Y. Xie et al. [28], the paper addresses the global concern
surrounding the rise of chronic diseases and highlights the
transformative impact of the "Smart Healthcare" era and
advanced technologies. It particularly emphasizes the role of
smart wearable technology in promoting healthier lifestyles,
collecting healthcare data, and aiding in disease diagnosis
and treatment. The paper underscores the importance of
effective data organization and analysis to enhance chronic
disease management. Artificial intelligence (Al) s
introduced as a solution, providing intelligent insights
through the analysis of data from wearable devices.
Additionally, block chain technology is proposed for
decentralized data sharing, privacy protection, and data
empowerment. By integrating Al, block chain, and wearable
technology, the traditional model of chronic disease
management shifts towards a patient-centric approach. The
paper outlines a technical framework based on these
technologies and explores their applications in chronic
disease management. It also discusses challenges and
outlines future research directions in this field.

Z. Zhang et al. [29], the paper delves into the domain of big
data-driven product design, propelled by the convergence of
5G and loT technologies. It focuses on the evolution of
digital twin technology and its role in the analysis of sensor
data. The study highlights the significance of turboelectric
nan generators (TENGS) as self-powered sensors, enabling
the development of low-power and self-sustainable systems.
The paper explores the advancements in TENG-based
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intelligent systems, including their applications in wearable
electronics, robotics, and smart homes. It also discusses the
potential of sensor fusion technology. Furthermore, the
paper contemplates the utilization of artificial intelligence in
the design of intelligent sensor systems tailored for the 5G
and loT era.

Tian et al. [30], the emergence of smart healthcare is
discussed, driven by transformative technologies like the
Internet of Things (loT), big data, cloud computing, and
artificial intelligence. The review underscores how these
technologies are reshaping conventional medical systems
into more efficient, convenient, and personalized healthcare
solutions. The study outlines essential supporting
technologies and their applications across different
healthcare domains. It also addresses challenges and offers
potential solutions. The paper concludes with a forward-
looking assessment of the future prospects of smart
healthcare.

A. Sujith et al. [31], a thorough examination of the dynamic
relationship between technology and healthcare is
conducted. With ongoing technological advancements and
the challenges posed by infectious diseases, the need for
effective precautionary and preventive measures becomes
increasingly important. Smart health monitoring (SHM)
systems are introduced as a solution to address these
concerns, catering to the demands of modern lifestyles. The
fusion of Industry 5.0 and 5G technologies has played a
pivotal role in the development of intelligent and cost-
effective sensors, enabling real-time health monitoring.
SHM offers rapid, cost-efficient, and reliable remote health
monitoring services, a capability not previously achievable
through traditional healthcare systems. Block chain
technology is integrated to enhance data security and
privacy, ensuring the protection of sensitive patient
information. Additionally, the incorporation of Deep
Learning and Machine Learning in health data analysis
serves multiple purposes, including preventive healthcare
measures and efficient fatality management. This approach
facilitates the early detection of chronic diseases that were
previously challenging to identify. To further improve cost-
effectiveness and real-time services, cloud computing and
storage are successfully integrated into the system. The
paper provides a comprehensive review of SHM, outlining
recent advancements and addressing existing challenges in
the field.

A. Barnawi et al. [32], the transformative potential of the
Internet of Things (10T) across various sectors, including
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healthcare, is explored. The paper highlights how 10T has
the capacity to reshape healthcare practices by integrating
technological, economic, and social perspectives. Amid the
global impact of the COVID-19 pandemic, the paper
introduces an innovative approach that combines IoT with
Artificial Intelligence (Al) to address the challenges posed
by the outbreak. This approach utilizes Unmanned Aerial
Vehicles (UAVSs) equipped with 10T devices to collect raw
data, which is then autonomously analyzed by Al
algorithms. The UAVs are equipped with thermal sensors to
capture thermal images, enabling the identification of
individuals with potential COVID-19 symptoms based on
their recorded temperatures. Additionally, the scheme
incorporates face recognition and mask detection
techniques, demonstrating high accuracy through the use of
machine learning and deep learning classifiers. To optimize
data processing for real-time analytics and predictions, edge
computing infrastructure is integrated into the system. The
study showcases the practical applicability of this
comprehensive scheme in real-time scenarios, illustrating its
potential to address pandemic-related challenges effectively.

I1l. RESEARCH METHODOLOGY

Machine learning has significantly advanced in recent
decades, playing a crucial role in automating disease
diagnosis. This progress has been beneficial in the medical
field, offering a supplementary diagnostic perspective to
medical staff and specialists. The concept of cyber-physical-
social systems, which combines smart space design,
artificial intelligence, big data analytics, and cloud
computing, is integral to the development of healthcare and
medical systems. These systems aim to provide
personalized, pervasive, and patient-centred healthcare
services. In line with this goal, some smart medical systems
grounded in cyber-physical-social systems have been
established to aid in computer-assisted diagnosis and
treatment.

A. Proposed Methodology

The working model will be deployed in three layers i.e., the
physical layer, transmission layer, and application layer.
These layers are described below (fig 3.1):

e Data Collection Layer: In this step, data collection will
be performed using diagnostic reports such as diabetes
and heart disease.

e Storage Layer: In this layer, collected data will be
transmitted over the internet for further analysis.

Diagnosis Layer: In this layer, data analysis and disease
prediction will be performed using proposed model
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Figure 5. Proposed Smart Healthcare Architecture

Detailed flowchart of the proposed model is presented below
in fig 3.2 and its algorithm is presented below.

Data
Collection

Pre-processing

Feature Fusion

I

Best Feature Selection
using random forest

I

Classification using LSTM

Classified output

Figure 6. Proposed Flowchart

Algorithm: Disease Diagnosis
Step 1: Data Collection

Data
Metabolic Data

MetaboliCgianetes <« Collect Diabetes

Data Metabolicheat < Collect Heart Metabolic

Data
Step 2: Preprocess Data (data MetaboliCgiaeres, data
MetaboliCheart)

Processed  Datagianetes <«  Clean  (data

MetaboliCgiaetes)

processed Datagiavetes
Datadiabetes)

«— Normalize(processed

processedDataneart <— Clean(dataMetabolicheart)

processedDataneart
Normalize(processedDataneart)

Step 3: Feature Fusion ()

Fusedata <« FuseFeatures(processedDatagiavetes,
processedDatanear)

Step 4: Optimal Feature Extraction (Fusedata)

model «— RandomForest(Fusedata)
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importanceScores «<— FeatureImportance(model)

selectedFeatures —

SelectTopFeatures(importanceScores)
Step 5: LSTM Classification
model < DefineLSTM()
Train(model, selectedFeatures)
Validate(model, selectedFeatures)
diagnosis < Classify(model, selectedFeatures)
Output(diagnosis)
B. Data Collection

In this step, data collection of the proposed model's
performance was evaluated using two specific datasets: one
related to heart disease and the other to diabetes.

Pre-processing

The diabetes and heart disease dataset are passed for
preprocessing. The dataset is standardized using Z-score
normalization, adjusting each voxel to have a zero mean and
unit variance.

D —p; 3.1)

D =

norm o_i
Data undergo preprocessing where D,y is the normalized
data and D is the original data using y; and g;, that represent
the its mean and standard deviation.

Optimal Feature extraction using random forest

The working methodology of Random Forest-based optimal
feature selection involves several steps, leveraging the
strengths of the Random Forest algorithm to identify the
most important features for a predictive model. Here’s a
detailed explanation of the process:

e Data Preparation: The process begins with a dataset that
includes various features (independent variables) and a
target variable (dependent variable).

e Random Forest Construction: A Random Forest model
is constructed using this dataset. This model is an
ensemble of decision trees, where each tree is built on a
random subset of the data and features.

e Feature Importance Calculation: For each tree in the
forest, the algorithm calculates how much each feature
decreases the impurity of a node (for classification, this
is often the Gini impurity; for regression, it might be
variance). The more a feature decreases the impurity,
the more important it is considered to be.

e Aggregating Importance Scores: The importance scores
for each feature are averaged over all the trees in the
forest. This aggregation helps in stabilizing the
importance measures, as it reduces the variance that
might arise from any single tree.
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Ranking Features: Features are then ranked based on
their calculated importance scores. The most important
features are those that, on average, contribute most to
the reduction of impurity across all trees.

e  Selecting Optimal Features: Based on these rankings, a
subset of top features is selected.

e Building the Final Model: A new model is then built
using only the selected subset of features. This model is
typically simpler, faster, and potentially more accurate,
as it focuses on the most relevant information.

In summary, Random Forest-based optimal feature selection
systematically evaluates and ranks features based on their
contribution to the accuracy of a model, allowing for the
construction of more efficient, effective, and interpretable
predictive models.

LSTM based Classification

Long Short-Term Memory (LSTM) units are a specialized
kind of Recurrent Neural Network (RNN) architecture
designed to handle the shortcomings of traditional RNNSs,
particularly in learning long-term dependencies.

The key components and mathematical operations of LSTM
architecture can be described as follows in figure 3.3:

Input Layer: Accepts sequences of vectors as input.

Hidden Layers: Multiple LSTM cells, each responsible for
handling different aspects of the sequence data.

Output Layer: Produces the final output, often after
processing by the hidden layers.

LSTM Cell Structure:

Memory Cell (C,): Stores values over arbitrary time
intervals.

Three Gates:

e Forget Gate (F,): Determines which information is
discarded from the cell state.

e Input (or Update) Gate (U,): Decides which new
information is added to the cell state.

e Output Gate (0,): Determines the output of the cell
based on its cell state.

Mathematical Operations:

Forget Gate: F,=c(Wf-[a<z—1>x<z>]+bf) Where o is the
sigmoid function, W, the weight matrix for the forget gate,
bf the bias term, a,_, the previous activation, and x, the
current input.

Input Gate: U,=c(W,,-[a,_1, x,]+ b,) W, is the weight
matrix for the update gate, and b,, is the bias term.

Candidate Value for Memory Cell (C,): C,=tanh(W, -[a,_4,
x, ]+ by) W. is the weight matrix, and b,. is the bias term.
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Update of Memory Cell: C,=0;+C,_,+U,*C, Combines the
old state (C,_,) and the new candidate value (C,).

Output Gate: 0,=c(W,-[a,_;, x,]+b,) Wo is the weight
matrix for the output gate, and b, is the bias term.

Final Output of the LSTM Cell: a,=0,+tanh(C,) The
activation function tanh provides the output of the memory
cell, modulated by the output gate.

Backpropagation Through Time (BPTT):

In the training process, the weights (W, W,, W, W,) and
biases (by, by, b, b,) are updated using BPTT to minimize
the error in predictions.

for%et input output
gate gate gate
€, (X &= E >Ct
® ||
E tanh @'@
N \ \ 4 — —
ht-l + —h

Xy
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Figure 7. LSTM Architecture [53]

LSTM units effectively manage the flow of information
through the use of gates and the memory cell. This unique
architecture allows them to remember long-term
dependencies while avoiding problems like the vanishing
gradient, common in traditional RNNs. The interplay of
these mathematical operations within each LSTM cell is
crucial for tasks involving sequential data, such as time
series analysis, natural language processing, and more.

IV. RESULTS AND DISCUSSIONS

The study utilized the Keras framework with TensorFlow in
Python on Google Colab to train the machine learning
model. The dataset was split 70:30 for training and testing.
The Adam optimizer with a learning rate of 0.0001 was
used, and the model was trained over 100 epochs. A Tesla
P100-PCIE GPU was employed.

Input Data (Heart Disease and Diabetes)

!

Pre-nrocessina

\ 4
Training

/ Random Forest \

Optimal Features

\ 4

LSTM

y

Trained Model /

A

\ 4
Testing

/

Trained LSTM Model

'
Testing

\ 4
Performance
Evaluation

A 4

Figure 8. Flowchart for Training and Testing of Proposed Learning Model for Disease Diagnosis Model

4.1 Tools Used

Python: Python is an advanced, interpreted language known
for its emphasis on code clarity and user-friendliness.
Introduced by Guido van Rossum in 1991, Python has
grown to become a leading programming language. It's
versatile, catering to web development, data analysis, Al,

and scientific studies. Its straightforward nature makes it
beginner-friendly, while its vast library and third-party
packages cater to professionals.

Keras: Keras is a renowned open-source library offering a
Python interface for neural networks. Initially conceived as
a simplified APl for deep learning atop libraries like
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TensorFlow and Theano, Keras has evolved as the preferred
neural network API for rapid development. With the advent
of TensorFlow 2.0, Keras has seamlessly integrated with it,
emerging as its primary high-level API. Keras simplifies the
processes of building, training, evaluating, and deploying
neural network models.

TensorFlow: Developed by Google Brain, TensorFlow is a
prominent open-source framework tailored for machine
learning. While it's particularly adept for deep learning, its
versatility covers a broad spectrum of applications. With a
rich set of tools, libraries, and community support,
TensorFlow enables researchers and developers to craft
machine learning models for diverse tasks, from basic
regression analyses to intricate neural networks.

Matplotlib: Matplotlib stands as a premier plotting library
in Python, complemented by its numerical extension,
NumPy. Established by John D. Hunter, Matplotlib delivers
an object-centric APl for integrating plots within
applications. As a staple in the Python realm, it's pivotal for
data representation in scientific computing, analysis, and
Al. It supports a myriad of plots, from line graphs to
histograms, making data visualization comprehensive and
user-friendly.

In data science and machine learning, these technologies are
integral components. Python is the core programming tool;
TensorFlow handles intense computations; Keras
streamlines model building atop TensorFlow; and
Matplotlib takes charge of data representation.

4.2 Performance Parameters

Sensitivity — — 2D
ensitivity = (TP + FN)
Specificity = — V)
pecificity = TN + FP)
(TP+TN)
Accuracy =

(TP + TN + FP + FN)

Where,

TP stands for True Positive.
TN stands for True Negative.
FP stands for False Positive.
FN stands for False Negative.
4.3 Dataset Used

The performance of the proposed model was tested using
datasets related to heart disease [51] and diabetes [52],
where the number of instances varied in each case. The
heart dataset [51] is a multivariate collection of 14 key
attributes, including age, sex, chest pain type, blood
pressure, and more, used primarily for predicting heart
disease and extracting insights about it. The diabetes dataset
[52] was originated from the National Institute of Diabetes
and Digestive and Kidney Diseases, is aimed at predicting
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the presence of diabetes in patients. It specifically includes
data from female patients who are at least 21 years old and
of Pima Indian heritage.

4.4 Result Evaluation

The section discusses the evaluation metrics for the
proposed model's performance against leading methods.
The proposed model, built using Python with Keras and
TensorFlow, was optimized with ADAM (learning rate:
0.0001). Trained for 100 epochs on the combined dataset
with an 70:30 training and testing ratio it utilized Google
Colab Tesla T4 GPU and 25 GB RAM. Below figure 4.2
shows the training and validation accuracy graph for the
proposed model. Similarly, figure 4.3 shows the training
and validation graph of the proposed model.
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Figure 9. Training and Validation Accuracy
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Figure 10 Training and Validation Loss

Table 4.1: Performance Evaluation of Proposed Model

Sensitivity | Specificity | Accuracy
Heart 0.988 1.000 0.998
Diabetes 0.986 0.990 0.989
Normal 0.987 0.987 0.987
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The table 4.1 shows the result of disease diagnosis in terms
of Sensitivity, Specificity, and Accuracy. For heart disease
diagnosis, sensitivity is 0.988, specificity is 1 and accuracy
is 0.998. Similarly, for diabetes, sensitivity is 0.986,
specificity is 0.990 and accuracy is 0.989. Similarly for
normal classification, sensitivity is 0.987, specificity is
0.987, and accuracy is 0.987. The high values in all three
metrics for each condition suggest that the model is highly
effective in diagnosing these conditions, with a particularly
notable 100% specificity in heart condition diagnosis,
implying no false positives in this category.
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0.988

0.9875
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0.987

Sensitivity
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0.9855 I
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Figure 11. Sensitivity Evaluation of Prediction

Figure 4.4 shows the sensitivity evaluation of disease
prediction result in which an average sensitivity is approx.
98%.
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Figure 12. Specificity Evaluation of Prediction

Figure 4.5 shows the specificity evaluation of disease
prediction result in which an average specificity is approx.
99%.

1 0.998

0.995
g
S 0.989
g 099 0.987
<

0.985 I

0.98
Heart Diabetes  Normal

Figure 13. Accuracy Evaluation of Prediction
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Figure 4.6 shows the accuracy evaluation of disease
prediction result in which an average specificity is approx.
98%.

4.5 Result Validation
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Figure 14. Comparative State-of-Art for Heart Diagnosis

The figure 4.7 shows the comparison between existing work
and proposed work for heart disease diagnosis shows
marked improvements in the proposed method. It achieves
higher sensitivity (98.82% vs. 96.38%), perfect specificity
(100% vs. 94.3%), and significantly better accuracy
(99.81% vs. 96.16%). This indicates that the proposed
method is more effective in correctly identifying heart
disease cases.

The comparison between existing and proposed methods
for diabetes diagnosis is presented in figure 4.8 that shows
both having sensitivity (around 98.6%), the proposed
method significantly improves in specificity (from 96.94%
to 99%) and overall accuracy (from 97.26% to 98.9%). This
suggests that the proposed method is better at reducing false
positives and is more accurate and reliable overall for
diagnosing diabetes.
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Figure 15. Comparative State-of-Art for Diabetes
Diagnosis

V. CONCLUSION

The study confirms that the amalgamation of Al and 10T in
smart healthcare infrastructures significantly enhances the
efficiency and accuracy of disease diagnosis. Al's ability to
process extensive medical datasets and 10T's continuous
monitoring capability create a synergy that allows for early
detection of diseases, reduced diagnostic errors, and
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improved patient outcomes. This technological integration
also alleviates the workload of healthcare professionals by
automating routine diagnostic tasks, enabling them to focus
on complex cases. Additionally, the reach of these systems
extends healthcare accessibility, allowing patients in remote
areas to receive expert medical advice and continuous
monitoring. Despite these advancements, the study
highlights the need for stringent data privacy measures,
ethical Al practices, and robust security protocols to foster
trust and reliability in these systems. Overall, Al and 10T
integration in healthcare represents a significant stride
towards more responsive, precise, and patient-centered
medical care.
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