

Design and Implementation of a Three-Phase Converter in a Solar PV System

Satyendra Kumar

M.Tech Scholar

Department of Electrical and Electronic Engineering

Rabindranath Tagore University

Bhopal, M.P, India

saty654@gmail.com

Prakash Narayan Tiwari

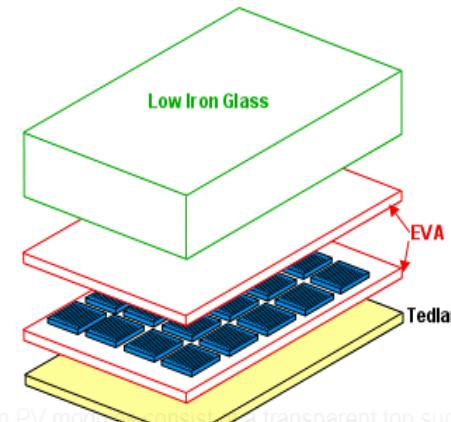
Assistant Professor

Department of Electrical and Electronic Engineering

Rabindranath Tagore University

Bhopal, M.P, India

prak.tiwari14@gmail.com


Abstract - A model of a solar panel array with variable irradiance and temperature is included in the study described here. Because each array receives a different amount of irradiation, the output varies. The system's output power has shifted as a result of this fluctuation. The work done here is done to adapt temperature and irradiance fluctuations in the solar panels and to increase the power output produced by the renewable energy source. With the suggested modulation technique, which has a simplified computational methodology, the levels of a multilevel inverter can be any number. This approach would be preferable for a solar system with variable input variables that generates consistent and effective output power.

Keywords –MLI, PV, Module material, mismatch losses, etc

1. INTRODUCTION

A Photovoltaic module is composed of numerous interlinked solar cells that have been sealed inside of one durable, reliable unit. A collection of electrically attached solar cells are often enclosed in order to shield themselves as well as the accompanying cables from the aggressive atmosphere in that they are utilized. Solar cells, for example, are susceptible to mechanical damage due to their thinness. The metal grids on the topmost surface of the solar cell and the wires that link the several solar cells are both susceptible to corrosion from water or water vapour. Packaging serves two main purposes: to shield the solar cells from physical harm and to stop water or vapour without oxidizing the electrical connections. PV modules come in a variety of shapes and sizes, and the structure of the module varies depending on the type of solar cell or application.

The large percentage of Photovoltaic bulk silicon Photovoltaic module have a clear upper edge area, an encapsulant, a back layer, as well as a framework across the outer part. As indicated hereunder, the rear layer among most modules is Tedlar, the encapsulant is EVA (ethyl vinyl acetate), as well as the top section of many of these modules are glasses.

Figure no.1 Standard bulk silicon modules components.

The connecting of solar modules or cells having varied characteristics or under various situations results in mismatched inefficiencies. Mismatch losses are a significant issue with Photovoltaic module as well as arrays within certain circumstances since the output of the the whole Photovoltaic modules is decided by the solar cell that has the least output in the worst-case scenario. The electricity produced by the "excellent" solar cells in a module may not energy the load if one of them is shadowed whereas the others are not. The

module may thereafter sustain irreparable damage as a consequence of highly localized power dissipation as well as localized heating.

Mismatch loss is defined as a fixed percentage decrease in the DC power output of the system caused by minor differences in the electrical characteristics of the installed modules. These losses will be greater in systems with a wider rated power error range. Mismatch values range from 0.01% to 3%, according to industry research, depending on system configuration and string length. In some PV modelling tools, mismatch loss includes differences in string lengths, cloud shading, and edge effects, as well as module electrical characteristics

II. LITERATURE REVIEW

Ohammadreza Miranbeigi and Hossein Iman-Eini [6] A power-based method for controlling a generator rectifiers (CHB) photovoltaic inverter derivative is introduced in this study. The proposed system uses the power with respect to current derivative of the solar arrays to track each solar array's individual maximum with PowerPoint. When used in conjunction with the hybrid modulation format, this technology allows for the full utilisation of CHB cells. Under severe mismatching conditions where the modulation index exceeds unity, the control system is naturally capable of stabilising the system. It is built in a straightforward manner. The efficacy of the proposed technique is supported by simulation and experiment results.

Cheng Wang [7] In order to expand the working range in terms of module mismatch, this study suggests a compensatory strategy that combines reactive power compensation with a cutting-edge modulation mechanism. Experimental results on a 2.4 kW/208 V single-phase setup demonstrate that the proposed method can not only handle a wider range of module mismatches, but it can also increase solar power gestion and circulatory systems by requiring fewer trying to switch events, a non-compromised MPPT, and a lower reactive battery capacity.

MANGANIELLO et al. [8] This paper discusses the various ageing mechanisms that occur in solar modules and provides evidence for the underlying cause-and-effect relationships. It is also shown that there is a closed-loop relationship between ageing and unmatching because mismatching among cells causes nonuniform ageing, which causes mismatching among cells due to thermal effects.

R.Pendem, S. Mikkili [11] The purpose of this paper is to discuss the various ageing mechanisms that occur in solar modules and to provide evidence for the underlying cause-and-effect relationships. It is also demonstrated that ageing and unmatching have a closed-loop relationship because mismatching among cells causes nonuniform ageing, which causes mismatching among cells due to thermal effects.

Kamran Ali Khan Niazi[12] This context provides an overview of the most recent mismatch mitigation strategies, as well as For easier understanding, operational ideas for both passive and active procedures. In terms of hardware complexity, complexity, effectiveness, cost, control, function dependability, and the appearance of local maximums, an assessment of all techniques is given. A few techniques also make use of simulated benchmarking. This review can be used as a resource to assist you in selecting the best methods for the jobs at hand. More significantly, it is anticipated to produce original concepts for cutting-edge mismatched mitigation strategies.

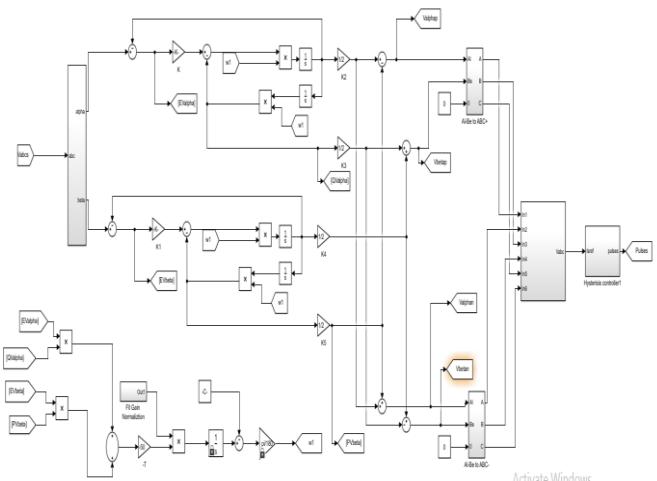
MAHMOUD AND EL-SAADANY [13] A reconfiguration method that quickly determines the ideal configuration is proposed in this study. Instead of addressing complex dynamic programming issues, as is the case with the existing methodologies, the suggested solution makes use of the greedy optimization notion to create a straightforward method for discovering the ideal PV configuration. Under varied shading situations, the benefits of the suggested method are validated in comparison to those of the existing methods. A case study with a sizable PV system is also carried out to show how the shorter calculation time might lessen mismatch power losses in partially shadowed PV systems.

TurgayDuman [14] The advantage of cascading NPC (CNPC) inverters is that they use lower rated parts, smaller filters, and less total harmonic distortion than is necessary for PV transmission and distribution. The proposed converter system has a lower overall cost, is scalable and modular, and can be serviced without downtime. Each module has a unique power imbalance among N-port voltage balancing control, which has been simulation-verified. The study and simulation of the N-port converter's are shown. Efficiency of the converting has also been verified on a prototype model.

Mustafa EnginBaşoğlu [15] Maximum power point (MPP) tracking may be ineffective due to

mismatched variables that affect photovoltaic (PV) module power capacity (MPPT). Furthermore, because bypass diodes are present and different parts of the modules may receive varying amounts of solar irradiation, Under these circumstances, their power-voltage (P-V) time constant takes on a multi-peak structure. This work provides an enhanced global MPPT (GMPPT) method that uses a limited and customizable scan strategy in addition to a 0.8VOC model. The proposed method does not require a threshold value, which leads to the unreliable operation that has been observed in previous studies using the 0.8VOC model.

III.METHODOLOGY

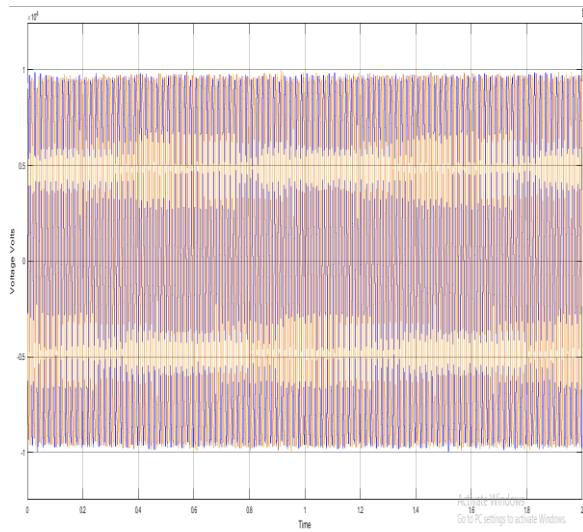

To model HRES components, researchers have developed a number of modelling techniques. Individual component performance is modelled either deterministically or probabilistically. When the electricity produced is sent to the grid or utilised by AC loads, DC-AC converters are necessary (inverters). Output inverters come in single-phase and three-phase varieties. For solar energy, there are four different types of grid-integrated inverters: micro grid inverter (AC module) systems, string inverter systems, central plant integrator systems, and multi-string transformer systems.

The previous method, central plant reactors, connected a large number of PV components to the grid using centralized inverters. The solar panels are linked in series (called a string). To obtain high power levels, these strings are directly coupled with string resistors.

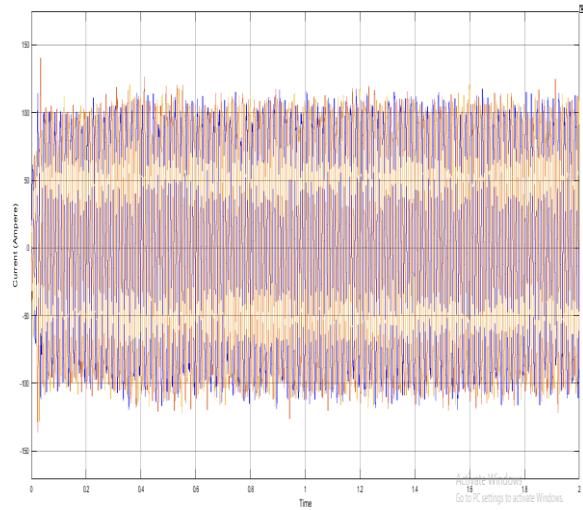
The previously mentioned triangular waveform amplitude and frequency parameters determine the exact design of the controller. The proposed controller's goal is to force the inverter to switch at a fixed frequency.

Table 1 : Inverter Parameters

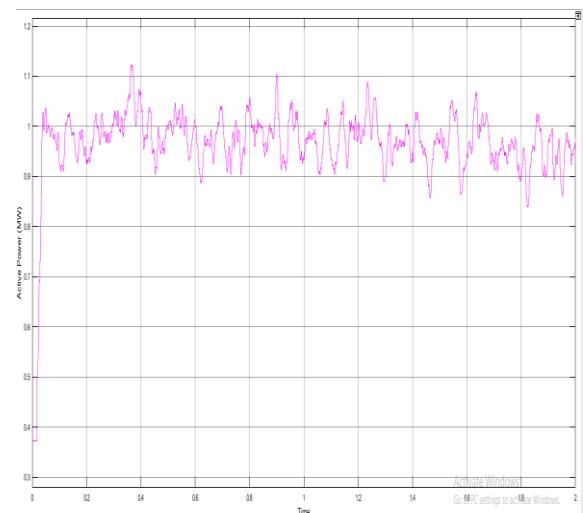
Power electronic device	IGBT/Diodes
Snubber resistance	5000 ohms
Forward voltages	0
Ron	1×10^{-3} ohms


Figure no.2 Extension of the proposed work

The PI controller is used in conjunction with the classical hysteresis current controller to overcome its drawbacks. The error in the current between the grid voltage and the solar system's output current is the input for each phase of the PI controller. The simplicity of construction, quick time performance, direct device peak current limitation, and practical callousness to voltage ripple are all benefits of this controllers.


IV.RESULT ANALYSIS

The work presented here includes a solar panel array model with variable irradiation and temperature fed to each module. Each array is subjected to varying irradiation, resulting in varying output; this variation has resulted in variation in the system's output power. The work done here is done to accommodate temperature and irradiation variations in the solar panels, as well as to improve the power output generated by the renewable energy resource.


CASE 1: Solar system with having variable radiation and basic regulation inverter control

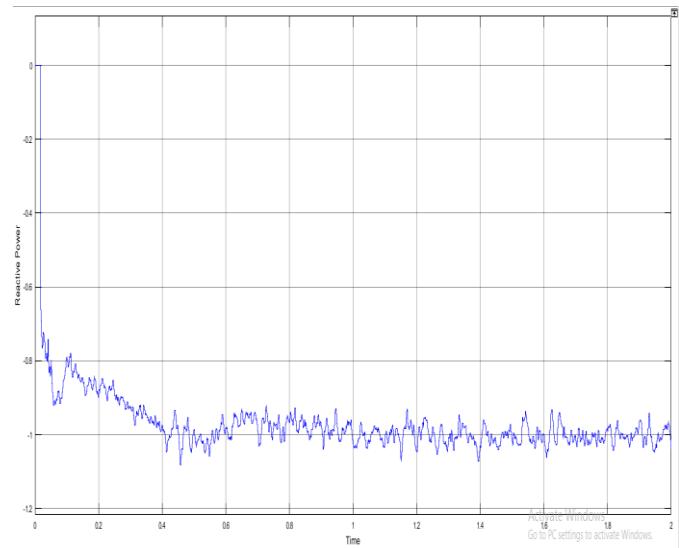

Figure no.3 System voltage output under simple inverter management

Figure no.4 Network current output under simple inverter control

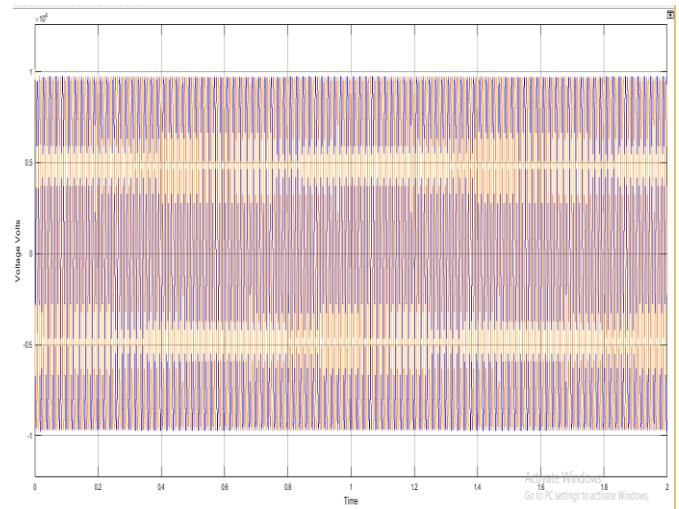


Figure no.5 System active power production under simple inverter management

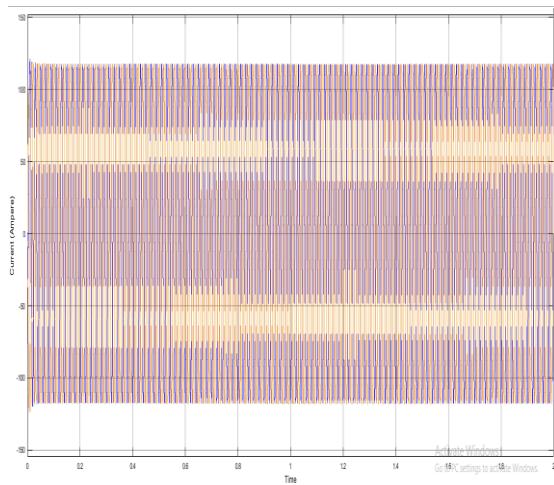
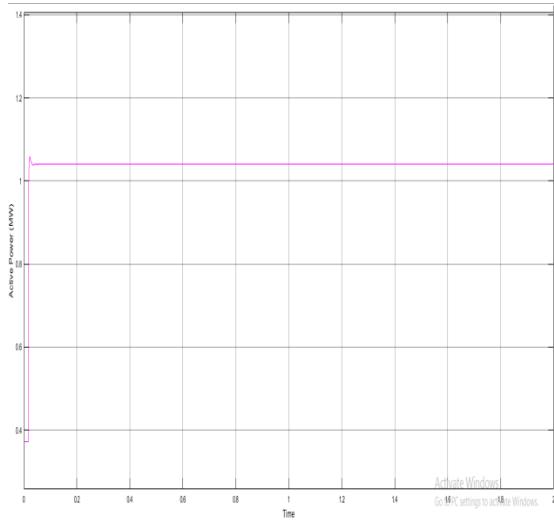


Figure no.6 System reactive power output under simple inverter management


CASE 2: Solar PV system with a power leveling controller that is being proposed

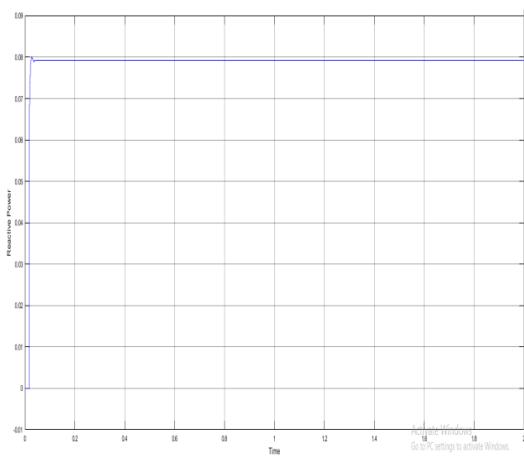

Figure no.7 Voltage Output from a Power Normal biological Perturbation Controlled System

Figure no.8 The battery charge output from the power normalizing hysteresis controller

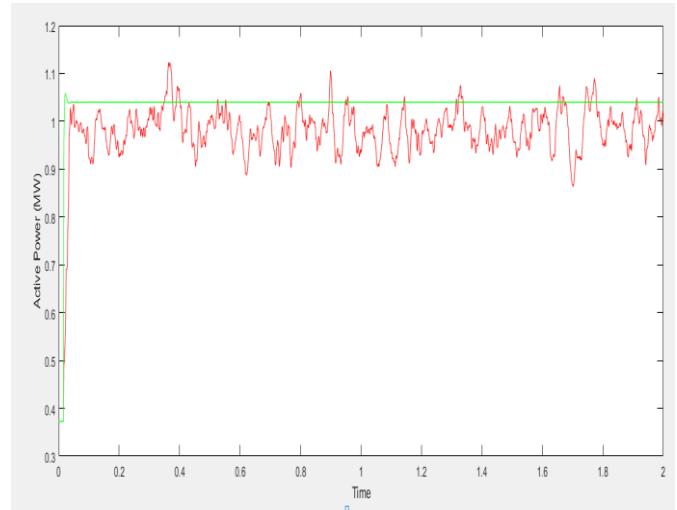

Figure no.9 Power output that is active from a system with a power normalizing switching function

Figure no.10 From a system with a power normalizing switching function, power system output

VALIDATION

The active power output of the two systems is compared in this section. The graph compares the active power output of the two systems. The green graph depicts the active power output of the proposed power normalising hysteresis loop controller for the inverter, whereas the graph shows the system's active power output under simple inverter operation.

Figure no.11 examination of active power outputs in comparison

When the voltage was held constant at 10KV, active power output increased from approximately 1 MW to 1.03 MW. The active power output was kept steady and balanced by the proposed controller, which utilised an inverter with power normalizing hysteresis loop control.

VI. CONCLUSION

In a solar PV system composed of several cell array models fed by changing irradiance and temperature, this study discusses the thorough design and execution of a three-phase converter. Power normalising hysteresis control has been proposed while integrating the inverter with the grid.

Variations in irradiation and temperature input to each array of solar modules can cause a disruption in the system's active power output, according to the research. With this goal in mind, a controller that will both stabilise and increase active power output was developed. The proposed technique's effectiveness and efficiency for grid integrated inverter operation is demonstrated by a comparative analysis in a solar PV with dynamic input parameters based model.

Table 6.1 : Comparative outcomes form the solar system

Parameters/ Model	Active Power	Voltage	Current
Model 1	1MW	10 KV	100 Ampere
Model 2	1.03MW	10 KV	120 Ampere

The following main conclusive points were drawn during the system analysis in the MATLAB/SIMULINK environment.

- In the system with power normalising hysteresis control, the magnitude of active power output is greater than in the system with basic voltage current regulation control. The active power was calculated to be approximately 1.03 Watts and less pulsing than the power output from the inverter with basic voltage current regulation Control.
- An increase in grid integration of roughly 3%.
- Furthermore, the magnitude and stability of reactive power in the proposed controller outperform reactive power in the basic voltage current regulation system.

The modelled solar system's voltage output is fed to the inverter for DC to AC conversion under control of temperature and variable irradiance. The electricity grid is then supplied with the voltage. Both technologies maintain the grid voltage at 10KV.

The suggested modulation method in an inverters is simple to use and adaptable to any number of levels. In a solar system with varying input parameters that still produces stable and efficient output power, this implementation would be preferable.

REFERENCES

- [1] S. Alotaibi and A. Darwish, "Modular multilevel converters for large-scale grid-connected photovoltaic systems: A review," *Energies*, vol. 14, no. 19, pp. 1–30, 2021, doi: 10.3390/en14196213.
- [2] C. Wang and K. Zhang, "Operating and Control of Cascaded Photovoltaic Systems Suffering Module-Mismatch," pp. 5482–5489, 2015.
- [3] C. Wang and K. Zhang, "A Novel Modulation Method Applied in Quasi-Z-Source Based Cascaded PV System Suffering Module Mismatch," pp. 4911–4916, 2015.
- [4] K. Wang, R. Zhu, C. Wei, F. Liu, and X. Wu, "Cascaded Multilevel Converter Topology for Large - scale Photovoltaic System with Balanced Operation," *IEEE Trans. Ind. Electron.*, vol. PP, no. c, p. 1, 2018, doi: 10.1109/TIE.2018.2885739.
- [5] L. Liu and H. Li, "A Coordinated Active and Reactive Power Control Strategy for Grid-Connected Cascaded Photovoltaic (PV) System in High Voltage High Power Applications," pp. 1301–1308, 2013.
- [6] A. M. Noman, A. A. Al-shamma, and K. E. Addoweesh, "A Survey on Two Level and Cascaded Multilevel Inverter Topologies for Grid Connected PV System," no. December, 2017, doi: 10.1109/IECON.2017.8216399.
- [7] M. Miranbeigi and H. Iman-eini, "Hybrid Modulation Technique for Grid- Connected Cascaded Photovoltaic Systems," vol. 0046, no. c, 2016, doi: 10.1109/TIE.2016.2580122.
- [8] C. Wang, S. Member, K. Zhang, J. Xiong, Y. Xue, and S. Member, "A Coordinated Compensation Strategy for Module-Mismatch of CHB-PV Systems Based on Improved LS-PWM and Reactive Power Injection," vol. 0046, no. c, 2018, doi: 10.1109/TIE.2018.2842789.
- [9] P. Manganiello, M. Balato, and M. Vitelli, "A Survey on Mismatching and Aging of PV Modules : The Closed Loop," vol. 62, no. 11, pp. 7276–7286, 2015.
- [10] O. S. Sastry, A. Sinha, T. Sample, A. Skoczek, G. Takyi, and D. Quansah, "Nondestructive characterization of encapsulant discoloration effects in crystalline-silicon PV modules."
- [11] J. Bai, Y. Cao, Y. Hao, Z. Zhang, S. Liu, and F. Cao, "ScienceDirect Characteristic output of PV systems under partial shading or mismatch conditions," *Sol. ENERGY*, vol. 112, pp. 41–54, 2015, doi: 10.1016/j.solener.2014.09.048.
- [12] S. R. Pendem and S. Mikkili, "Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses," *Sol. Energy*, vol. 160, no. November 2017, pp. 303–321, 2018, doi: 10.1016/j.solener.2017.12.010.

[13] K. Ali, K. Niazi, Y. Yang, and D. Sera, "Review of mismatch mitigation techniques for PV modules," 2019, doi: 10.1049/iet-rpg.2019.0153.

[14] Y. Mahmoud, S. Member, and E. F. El-saadany, "Enhanced Reconfiguration Method for Reducing Mismatch Losses in PV Systems," vol. 7, no. 6, pp. 1746–1754, 2017.

[15] T. Duman, S. Marti, M. A. Moonem, A. Ahmed, and R. Abdul, "A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems," no. May 2012, 2017, doi: 10.3390/en10050698.