

Study on Rail Electrification Systems and their Harmonic Distortion Issues

Abhinav Kumar Tiwari

M.Tech Scholar

Electrical and Electronics Department
Corporate Institute of Science and Technology
Bhopal, M.P, India
abhinavnonapar@gmail.com

Prof. Vivek Koshta

Assistant Professor

Electrical and Electronics Department
Corporate Institute of Science and Technology
Bhopal, M.P, India

Abstract: Due to the harmonics insertion from of the asymmetric electric engine, particularly high / elevated / sizable trains, torque ripple and chromatic resonant difficulties have been commonly documented in railway electrification systems (RESs). We investigated the imbalance and switching frequency caused by a neighborhood transmission system, as well as their effects and mitigation policies, in this work. The varying levels of deformation in the supplying program's input characteristics can present a hazard to the propulsion loads. The many

Keywords: *Railway electrification systems (RES), Harmonics, Converters, Active filters*

I. INTRODUCTION

Different energy conversion strategies are used in electrical transmission networks for passenger and freight to convert an existing supply system is composed of two main intend. Generators coupled in open delta (V v), Scott, or Le Blanc topologies are used in the more typical three-phase to two single component goes deeper [1]. Due to the changing stress in the single-phase circuits, the load connected among each circuit does not recompense one another in practice.

profile of a transportation system and a train line In addition, the use of unregulated variability to supply the propulsion load contributes to the three-phase supply's overall imbalance. Harmonic components are injected into the solitary distribution system, and dependent on the transformers interconnections and spectral order, these harmonic propagated into the main three-phase scheme. The complete system imbalance is influenced by the frequency response fed

into the three main system [2]. Filters and imbalance compensation are therefore

necessary to ensure appropriate system performance and improve electrical quality of service [3].

The power distribution system supplying the traction system can be severely harmed by high THD of the system present, harmonic, reactionary energy consumption, voltage imbalance and flicker, and low power factor problems. Harmonic current in the electricity engine is a huge problem for all electrical energy researchers, and they've been working hard to reduce frequency components (especially harmonic current) in the system to make it clean and tidy, clean, and consumer-accessible electronic utility companies with high performance and reliability. These issues can be solved by installing a passive filtration system in suction distribution systems since they are inexpensive, efficient, and function properly in the middle to high voltage ranges. They completely eradicate deleterious succession prevailing and help to compensate for reactive power deficits, trying to improve the output power of transmission lines.

1.1 Converter in Electric traction system

The power supplied by the battery (for example, the battery) in some DC circuits of Hybrid Electric Vehicles (HEV) or Electric Vehicles (EV) must be raised to feed the Voltage-Source Inverter (VSI) and the actuators. If the supply terminal voltage cannot assure manoeuvrability over a range of speeds, this really is warranted. At high speeds, flux weakening is frequently recommended, however it affects system performance. A unidirectional buck converter is used in some situations to modify the DC-bus voltage (Fig. 1). The supply voltage vDC of the converter, on the other hand, follows multiple operating regimens that

correspond to specific engine speeds. As a result, they are not constantly adjusted to the power requirements.

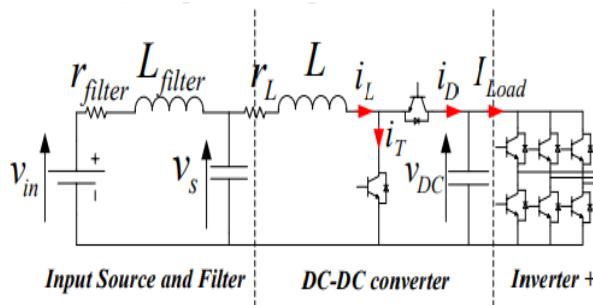


Fig. 1 - General electric traction system using an input source and filter, a bidirectional DC/DC boost converter, a voltage-source inverter and a PMSM.

The outputs waveform and hence the system efficiency can be controlled by controlling the electrical pulses to all of these converters.

1.2 Background survey

[1] Different kinds of particularly transformer have been used in Taiwan and overseas to alleviate power distribution unbalance. Although three-phase transformers simulations are required for three-phase load cfd simulations, this work uses particularly inverters that have been used previously to generate three-phase models. The following topics, the V-V connection, the component, the Scott ability to connect, the Le Blanc connectedness, and the customized ability to connect are all examples of these converters.

[2] In steady-state motoring mode, this work presents a study for modeling harmonic components supplied by three-level discharge current (PWM) converters of the elevated railway traction drive. That a double Based on fourier theory is used to develop a mathematical formulation for converter harmonic. The findings of the period simulations produced with PSpice are then compared to those obtained with the suggested model. It is demonstrated that the current harmonics calculated using the suggested model are consistent with some of those derived that use the period simulation software.

[3] This study compares conclusions from the p-q and p-q-r hypotheses in shunt active and reactive filters with three-phase four components, focusing on the effect of voltage level on control algorithms that calculate compensatory current flow. If negligible components are present in the voltage supply and

current values at the same time, they form negligible power flow, therefore control technique rely on both hypotheses must include supplementary computations to allow the absorption efficiency to be eliminated. The use of a management methodology based here on p-q theory to eliminate the alongside without using energy storage systems is presented, with the added benefit of removing the unnecessary conversion from alphabeta0 to pqr dimensions required in the p-q-r theory.

[4] A prototype predicted direct authority control for propulsion line-side converter is provided in this research. To determine the expected values of frequency and voltage, the process uses a discrete-time model of traction line-side conversion in d-q reference frame. The best social change and social is then chosen by minimizing an objective function for energies, which is used to tool which supports mistakes at the very next sampling period. Conventional transient direct current control (TDCC), which is extensively used in CRH3 Electrical Multi Units, is compared to the suggested method's performance (EMU). The results of simulation experiments indicate that the proposed technique outperforms TDCC.

II. INDIAN ELECTRIC TRACTION SYSTEM

Electric traction is used by Indian Railways and is powered by a 25kV, 50Hz solitary AC electricity supplied by state agencies. The propulsion sub-stations that supply power to the contacting wire are typically 30-40 kilometers apart and can receive power from just about any two stages of the electricity company power lines. They have a 220/166/132/110 kV input voltage that is step back to individual phase 25 kV using traction transformer. The locomotives receives this 25kV via the conveyor system installed on the engine. A propulsion converter accepts the 25kV and reduces it down to 1000V in the locomotives. When in a DC transmission system, each distribution feeders traction transformers has two primary, each of which feeds an unregulated converter that ameliorates the inputs into dc and feeds it to electric motor through smoothed processors. Otherwise, the Dc is connected to The ac using an inverter, as described above, to power AC loads..

III. HARMONIC PROBLEM SOURCES IN RESS

As a result, various harmonics components are displayed and categorized separately.:

(1) Background current harmonic are generated by exacerbated harmonics injection by electrical components linked to the utilities electricity system, and are typically less than 20pu, i.e. 5-, 7-, 11-, and 13-th harmonics [8, 9]. They can be monitored sans transportation in a novel RES. Furthermore, the series reverberation may magnify the underlying overtones.

(2) Harmonic resonant is induced by the combination of inductive and capacitive elements/parameters, which is then activated by the nonlinear train's voltage generation. Harmonic resonant can only occur if two requirements are met: 1) the systems capacitance and capacitors match at specific frequency, and 2) the systems is coupled to a sinusoidal source that encompasses some or all of these frequency ranges.

(3) Intrinsically, distinctive overtones form around the integers frequency variation of elevated trains' PWM-controlled 4-quadrant converter (4QC) [5, 6]. The overtones of a conventional power train are characterised by rich reduced harmonic components [7]. Distinct electric engine type may well have various harmonics behaviors and characteristics of standard model impedance, in addition to having various fundamental spectra.

IV. HARMONICS OF TRACTION SYSTEM SUPPRESSION

The lumped parameter of a.c. propulsion systems using static synchronous locomotive are extremely variable, which distinguishes them from traditional steady loads such as a.c./d.c. proposed converter powered loads (e.g. H.V.D.C. system). When dealing with organizations of this sort, design engineers may fall into a trap. Batteries were used as reactive power compensation devices for a long time, and their ratings are widely known. In H.V.D.C. systems and other D.C. drives, capacitance are also employed as filtering devices. Due to the tiny size of the harmonics particles made by any of these motors, the engineering for these kind of apparatus may appear uncomplicated. The a.c. propulsion system employed in Queensland produces a lot of lower order harmonic components such the 3rd, 5th, and 7th. It's difficult to predict the maximal current harmonics. Due to these unforeseen circumstances, designers must guarantee that filter hardware, especially capacitor, can resist the resulting overstresses. It's possible that the capacitor's breaking level was within the short moment over voltage delivered to it. The capacitance, however, will fail sooner than expected due to the high frequency of incidence of such levels as well as the knowledge that

perhaps the life of something like the capacitance is dependent on the current accumulating of the recurrent overvoltage period. Other considerations, such as the shifting impact, line faults, and other system disruptions, ought not be disregarded while constructing filters [20].

The harmonics produced by such occurrences must be thoroughly examined. The harmonic compensator in an AC transmission system is depicted in Figure 2.

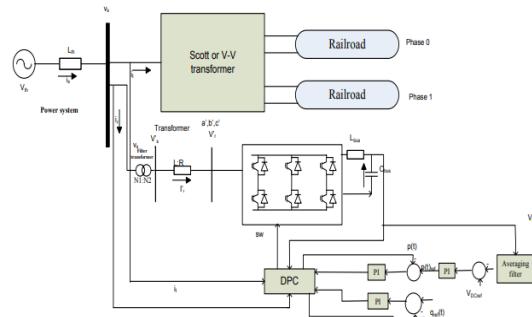


Figure 2 : Harmonics and unbalance Compensation System

A voltage increasing transformers is being used to attach the simultaneous active low pass towards the electricity system. The three-phase side of the active filter is connected to a voltage source inverter designed as an active three-phase PWM rectifier. The complicated power's real and reactive terms are nearly constant to $p(t) = 3VI \cos(\phi)$ and $q(t) = 3VI \sin(\phi)$, respectively, [4]. The simultaneous real and reactive power with imbalanced transmission losses incorporates intermediate and fluctuating terms to correct for load disparity and cuts harmonics injections from of the demand to the distribution system, unlike equivalent balance three components. This is accomplished by maintaining the supply's simultaneous active and reactive power constant. This is accomplished by employing a voltage step-up filter transformers to link a shunt active filter directly to the power system. The microcontroller compute the total real and reactive power consumed by the drive systems and filtering configuration. The microcontroller selects the conversion voltage V_r required to maintain the total instantaneous reactive power pulled from grid consistent in the predicted compensation system.

Discussion

Power filters are the most common option for resolving harmonics and reverberation problems generated by electrical gadgets as well as other non-

linear loads. Aggressive, passively, and both therapies are the three basic types. The three fundamental forms of frequency deviation are dealt with using three main categories of technological solutions [10, 11]. a) The first category comprises strategies for minimizing or removing quadratic device current harmonics emission. As a result, one can reduce harmonic emissions of the source by improving converter control techniques, harmonic compensating controls, and altering grid-tied filtering parameters [12-13]. The unifying goal of these techniques is to eliminate the sinusoidal source's root [14]. However, due to the obvious broad range of frequencies of various nonlinear systems electronics, these approaches are not viable in some cases. Meanwhile, even if the harmonics emissions conforms with the regulations, frequency deviation can be easily exacerbated by a resonance. b) Harmon filters (e.g., passive, active, and hybrid filters) are commonly employed to reduce implemented or correct for anti-harmonic currents in order to silence harmonic distortions [15]. They can be used with a variety of harmonics generators. Single-tuned and elevated filters are commonly used in classical filtering methods to mitigate current harmonics injections [15, 16, 18]. Single-tuned filters attenuate strongly at a single center frequency. Those filter, on the other hand, will generate a series resonant point beneath the original resonance point. Filtering elevated elements produced by the PWM VSC with high-pass filters, including first level or second derivative, can be useful. However, putting a resistance in series with such a capacitance wastes kilowatts of power. b) In addition, we'd like to present the third method. Optimization/modification of important or hypersensitive network weights to shift detrimental resonant frequency and provide a lower high impedance at those frequency [19,17]. The resonant susceptibility investigations, which yield sensitivity indicators for each bus, characteristic, or element, can be combined with the this technique.

CONCLUSION

Due to a small single phase, the electrical drive load creates voltage instability, overvoltages due to the mobility of something like the traction load, and overtones due to the employment of switching devices in dc and ac locomotive. Harmonic components are one of the most important concerns to examine because they generate so many other issues in locomotives, traction switchgears, and related businesses. The numerous controllers used in electrically powered networks, as well as their

functions, are detailed in this study. The different types of harmonics and their effects have been studied. Finally, several protection against threats were used to gain an understanding of something like the system . it focuses as well as methods for optimizing resources..

References

- [1] B. K. Chen, B. S. Guo, "Three phase models of specially connected transformers," IEEE Trans. Power Del., Jan. 1996, vol. 11, no. 1, pp. 323–330.
- [2] G. W. Chang, H. W. Lin, S. K. Chen, "Modelling characteristics of harmonic currents Generated by high-speed railway traction drive converters," IEEE Trans. Power Del., Apr. 2004, vol. 19, no. 2, pp. 766–733.
- [3] R. E. Morrison, "Power quality issues on ac traction systems," in Proc.9th Int. Conf. Harmon. Quality Power, 2000, vol. 2, pp. 709–714.
- [4] M. Aredes, H. Akagi, E. H. Watanabe, E. Vergara Salgado, L. F. Encarnacao, "Comparisons between the p-q and p-q-r theories in three-phase four-wire systems," IEEE Trans. Power Electron., vol. 24, no. 4, pp. 924–933, Apr. 2009.
- [5] Z. Liu, C. Xiang, Y. Wang, et al., "A Model-Based Predictive Direct Power Control for Traction Line-Side Converter in High-Speed Railway", IEEE Trans. Ind. Appl., vol. 53, pp. 4934-4943, Sep./Oct. 2017.
- [6] G. Chang, H. Lin, and S. Chen, "Modeling Characteristics of Harmonic Currents Generated by High-Speed Railway Traction Drive Converters", IEEE Trans. Power Del., vol. 19, pp. 766-773, Apr. 2004.
- [7] Z. Ye, L. Edward, K. Yuen, and M. Pong, "Probabilistic Characterization of Current Harmonics of Electrical Traction Power Supply System by Analytic Method", Proc. 25th IEEE Ind. Electron. Soc. Annu. Conf., vol. 1, pp. 360-366, Nov./Dec. 1999.
- [8] S. Gao, X. Li, X. Ma, et al., "Measurement-Based Compartmental Modeling of Harmonic Sources in Traction Power-Supply System", IEEE Trans. Power Del., vol. 32, pp. 900-909, Apr. 2017.
- [9] Z. He, Z. Zheng, and H. Hu, "Power Quality in High-Speed Railway Systems", Int. J. Rail Transport., vol. 4, no.2, pp. 71-97, Mar. 2016.

[10] L. Czarnecki, "An Overview of Methods of Harmonic Suppression in Distribution Systems", Proc. of IEEE PES Summer Meeting 2000, vol. 2, pp. 800-805, Jul. 2000.

[11] F. Peng, "Harmonic Sources and Filtering Approaches", IEEE Ind. Appl. Mag., vol. 7, pp. 18-25, Jul./Aug. 2001.

[12] P. Davari, F. Zare, and F. Blaabjerg, "Pulse Pattern-Modulated Strategy for Harmonic Current Components Reduction in Three-Phase AC-DC Converters", IEEE Trans. Ind. Appl., vol. 52, pp. 3182-3192, Jul./Aug. 2016.

[13] S. Giannoutsos, S. Manias, "A Systematic Power-Quality Assessment and Harmonic Filter Design Methodology for Variable-Frequency Drive Application in Marine Vessels", IEEE Trans. Ind. Appl., vol. 51, pp. 1909-1919, Mar./Apr. 2015.

[14] E. Bompard, E. Carpaneto, G. Chicco, et al., "The Impact of Public Lighting on Voltage Distortion in Low Voltage Distribution Systems", IEEE Trans. Power Del., vol. 16, pp. 752-757, Oct. 2001

[15] X. Jiang, A. Gole, "A Frequency Scanning Method for the Identification of Harmonic Instabilities in HVDC Systems", IEEE Trans. Power Del., vol. 10, pp. 1875-1881, Oct. 1995.

[16] S. Papathanassiou, M. Papadopoulos, "Harmonic Analysis in a Power System with Wind Generation", IEEE Trans. Power Del., vol. 21, pp. 2006-2016, Oct. 2006.

[17] B. Gustavsen, "Study of Transformer Resonant Overvoltages Caused by Cable-Transformer High-Frequency Interaction", IEEE Trans. Power Del., vol. 25, pp. 770-779, Apr. 2010.

[18] Z. He, H. Hu, Y. Zhang, and S. Gao, "Harmonic Resonance Assessment to Traction Power-Supply System Considering Train Model in China High-Speed Railway", IEEE Trans. Power Del., vol. 29, pp. 1735-1743, Aug. 2014

[19] R. Morrison and J. Corcoran, "Specification of an Overvoltage Damping Filter for the National Railways of Zimbabwe", Proc. Inst. Elect. Eng., vol. 136, pp. 249-56, Nov. 1989.

[20] OA HAMOUD , P.T. GRIFFITHS , (1989) "Harmonics in Electric Traction Systems" Heavy Haul Railway Conference 11 – 15