

Review on Spectrum Sensing Techniques for Wireless Networks

Sunil Khoja

M.Tech Scholar

Sagar Institute of Science and Technology
Bhopal (M.P.), India
skhoja490@gmail.com

Anoop Tiwari

Associate Professor

Sagar Institute of Science and Technology
Bhopal (M.P.), India

Abstract: The demand for bandwidth is expanding in lockstep with the advancement of wireless communication technologies, and as a result, wireless spectrum resources are becoming more limited. The main principle of cognitive radio is dynamic spectrum access, which has been highlighted as a possible solution for spectrum shortage. Spectrum sensing is thought to be a popular solution for spectrum shortage caused by a high number of sensors, especially in Internet of Things (IoT) technologies. Nonetheless, the Internet of Things faces significant spectrum sensing problems yet to be addressed. To be used in complex and scalable IoT systems, traditional spectrum sensing methods must be properly adjusted. The purpose of this study is to provide an introduction of spectrum sensing for Internet of Things and its various architectural configurations. We present a comprehensive list of spectrum sensing issues for IoT devices. In the deployment of smart networks, machine learning and deep learning technologies are becoming more popular.

Keywords: Spectrum Sensing, Wireless Network, Collaborative Optimization, Spectrum Access.

I. INTRODUCTION

People's work, lifestyles, and the growth patterns of many businesses have all been dramatically changed since the introduction of the 1-G mobile communications network. The 5-G mobile telecommunication system is being developed in order to deal more effectively with the exponential expansion of mobile data traffic, large device connectivity, and the constant appearance of new commercial and applications situations in the future. The Internet of Things (IoT) and mobile Internet will be the primary drivers of 5G development. Fifth Generation would not only encounter the diversified requirements of the population in different areas including including residential area, collaborate, free time, and transportation in the future, but it will also pervade the IoT and encounter the numerous multiple professional realms such as economy, healthcare, public transit, and other businesses to realize true interconnectivity of all objects [1].

Nowadays everyone wants to get content and data at any time, anywhere, also while moving through internet, thanks to the fast developments of internet connectivity and various mobile advance frameworks, and the mobile Broadband has evolved swiftly against this backdrop [2]. It is mostly focused on human-centered communication and improving the user experience. The need for experience will continue to rise in

the future in a variety of applications, including distant places, busy stadiums, and high-speed rail. The Internet of Things (IoT) is fast gaining some traction in academia and industry circles [3][4], and is generally recognized as among the most important technologies that will drive future network evolution[5][6].

In 1999, MIT prof. Kevin Ashton and his associates conceived notion of the Internet of Things. They recommended effectively linking radio frequencies identifications technologies and then using the Internet to identify and manage product information. The central idea behind the Internet of Things is to combine recognition accuracy, remote monitoring as well as Internet into a single networking system that interlinked all related technologies [7], allowing the communication with them, also access a different types of data about them from anywhere. IoT has the ability to link nearly anything to the Internet due to the fast development of inexpensive tiny sensors, ubiquitous networks, effective cloud computing, and big data. Fifth Generation systems will face new needs and problems in the following application scenarios defined in Table 1, due to the fast expansion of the internet Services in mobile technology and Internet of Things. Fourth Generation and previous generation technologies will not be able to meet those higher standards. The network will undergo significant changes in order to handle the problems provided by differential performance metrics in a variety of application scenarios, including new spectrum explorations, dynamic bandwidth consumption, and increased energy efficiency.

Table:1 Application scenarios and Challenges in Mobile and IoT based Application

Application Types	Requirement and challenges
Mobile internet based	<p>Expanded Coverage: To give a consistent, higher-speed experiences at all times.</p> <p>Massive capacity: To offer consumers a very higher data transfer rate.</p>
IoT based	<p>Massive connectivity: To accommodate over a 100 million interconnections while ensuring very lower terminals energy consumption.</p>

	Low-Latency: To give millisecond end-to-end delay and near-perfect service dependability guarantee to users.
--	---

Furthermore, the majority of current frequencies have indeed been assigned to related services. The radio bands that IoT devices may use are quite restricted. The notion of cognitive radio is presented. Its fundamental premise is to accomplish opportunistic dynamic spectrum access, in which illegal users (also known as SUs) do SS and unscrupulously access idle frequencies bandwidth that were initially allocated to primary user (or PUs) and yet are rarely utilized, if at all. The SUs should rapidly quit the channel once the PU is spotted and reacquires the available bandwidth [8][9]. To prevent interference at this level of spectrum access, a straightforward detect and avoid strategy is applied. However, because of the present widespread usage of the band, this easy solution is ineffective.

Unlike conventional CR technology, which focuses primarily on enhancing sensing capabilities and increasing access to idle spectra, cognitive spectrum collaboration research also focuses on the application of collaborating after sensing. Spectrum sensing cooperation across SUs, cooperative spectra usage utilizing dynamic spectrum access technologies, and cooperative data transfer using developing coding technology are all part of the partnership.

II. SPECTRUM SENSING AND COOPERATIVE SPECTRUM SENSING

Cognitive technologies is built on the foundation of SS technology. Consumers in the integrated network must sense the spectrum and discover free spectra for usage in unknown spectrum situations[10]. In order to reduce disturbance to greater priority customers, or in a typical CR situation, SUs take use of licensed spectrum that is presently not being utilized by PUs. There may well be minor problems or miss detections if the spectrum sensing result is incorrect. False warnings will prevent SUs from gaining access to the spectrum, lowering network performance. Miss detections will force SUs to reach the prohibited spectrum, which may cause PUs to be interfered with. This might result in the SUs being punished, and they could even be barred from utilizing the PUs' licensed spectrum in the future. As a result, the major goals of SS technology are to prevent miss detection and improve sensing accuracy.

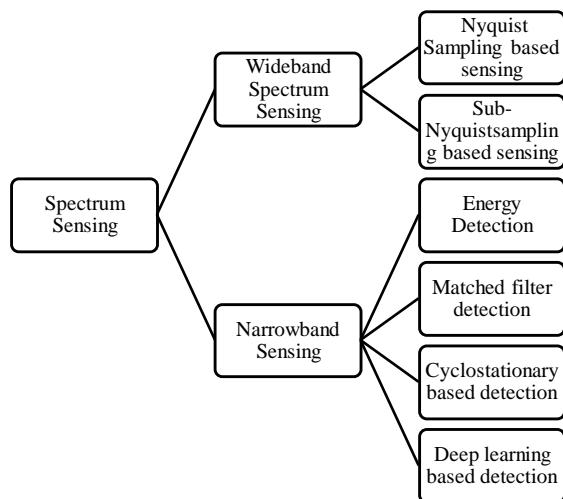


Figure: 1 Key technology of spectrum sensing

Narrowband and wideband SS are the two primary types of SS technologies. Narrowband- SS examines the state of a unique spectrum at a point, while wideband SS examines a large frequency range which frequency typically surpasses the channel's coherence bandwidth. Nyquist sampled-based sense and sub-Nyquist sampled-based sense are two types of wideband SS. To acquire a wideband signal for spectrum analysis, the former use typical analog to digital converters. The latter employs compressive sensing and other technologies to achieve sampling rates that are lower than Nyquist sampling rates.

Because it needs less previous information from the Primary Users and therefore is straightforward to execute, detection method became the most used technique of spectrum sensing. The fundamental idea is to calculate the signal's energy in the observed spectrum over time to compare it to a predefined judgment threshold. The choice of the predefined threshold is critical in the energies detection approach. The false alarm rate is low however the miss detection rate is high whenever the decision threshold is set high; alternatively, the false alarm rate is high and the missed detection rate is low[11]. To create a reasonable threshold, these elements must be included into the balance. A matching filter detection approach may be used when all of the information about the Primary Users signal is available. The basic idea is to do a self-correlation between both the previous Primary Users signal and the detected signals and then establish a correlation threshold for assessment. This sort of approach may potentially reach the highest efficiency in an additive white Gaussian channel, but its applications are limited because to the demand of PU signal information. Cyclostationary detection employs the periodicity of the modulating Primary User signal's mean value as well as the spatial correlation to autocorrelate the identified signal and make a conclusion based on the cycles spectral density function's correlation features. Between the two techniques, the trade-off among effectiveness and complexity is found.

With the advancement of artificial intelligence technologies in recent years, academia has started to apply deep learning

for wireless signal recognition[12]. Additionally, there have been successful efforts to employ NN for SS difficulties in intelligent networks. To increase perception speed and accuracy, the information exchange of observation outcomes amongst SUs may be used to achieve improved perception accuracy. Cooperative spectrum sensing[13] is the name given to this technique. One of the most important technologies for cognitive spectrum cooperation is cooperative spectrum sensing.

III.DYNAMIC SPECTRUM ACCESS TECHNOLOGY

Spectrum resources are among the most significant resources in intelligent network situations with large access. It is also vital to distribute spectrum resources effectively on the grounds of executing SS to get free spectra. To minimize collisions while accessing the spectrum resource, the SUs must work together. Furthermore, because of the high number of consumers in the integrated network, changes in user demand for spectral assets are getting more complicated[14]. To increase spectrum usage, smart dynamic SS technology must be introduced on top of conventional approved spectrum access[15]. Moreover, the purpose of spectrum access is frequently not only to increase network performance. Issues like QoS, data prioritization, and fairness must be addressed depending on the circumstance.

The BS may assign the spectrum that each node accesses in a single-hop network with a single point or a BS, and spectrum access is simple to implement. Intelligent networks, on the other hand, are often multihop networks with issues like concealed and revealed endpoints, and in many relevant cases, spectrum access cannot be provided using pre-built infrastructure like BSs. Many ways may implement dynamic spectrum access in dynamic networks utilizing diverse techniques such as reinforcement learning and deep learning models to tackle the issue of spectrum access in dynamic networks.

IV.CODING TECHNOLOGY

Coding technology has emerged as a critical tool for dealing with mistakes and erasure in link transmission, as well as maintaining a high rate of communication and optimal use of spectrum resources. In addition to the commonly utilized Low-Density Parity-Check (LDPC) coding, turbo codes, as well as other coding technologies, several developing coding methods with specific properties may also play an important role in the cognitive spectrum cooperation scene. Multihop broadcast networks make up the majority of the networking in the cognitive scenario. In these networks, network-coding technique could be used to recognize collaboration among source consumers and relay users in order to improve network throughput rates, while overhead problems in broadcast networks can be solved by implementing fountain codes, and different individuals can co-operatively transmit data utilizing fountain codes. Furthermore, changes in environmental factors, such as interference from the PU, might cause machine learning to achieve improved throughput performance in a particularly changing situation, like the cognitive spectrum collaborative scenario. During the learning process, performance varies, and the collisions

statistical probability of packet data transmission over the connection changes dynamically as well, resulting in a risk of dynamic channel erasure. Fountain codes and networking codes are also appropriate for usage in cognitive spectrum cooperation settings due to their capacity to cope with changing erasure channels [16] [17] [18] [19] [20] [21] [22].

V. LITERATURE REVIEW

Nazza et al.[19] proposes a machine learning classification model using SVM for wideband SS in sparse coding patterns. The occupancy is studied by treating the spectrum as a collection of narrow and continuous sub-bands. Subband occupancy is determined by following the sparse coding convergence patterns in every sub-bands utilizing a specified dictionaries. Support vector machine is utilized to make decisions based on the gradient operator's quantification of the convergence pattern. Individual subband saturation is studied in this situation without the use of filter banks. Furthermore, because sparsity is used to expose the convergence pattern, the sparsity level does not need to be known or estimated. For various training set sizes, the proposed approach calculates a 50% cross-validation error. In general, the PD average is greater than 50% over an SNR of 5 dB. The suggested approach achieves high probability-of-detection results with nearly no false-alarm rates. The conclusions are backed up by numerical simulations testing and computations.

Wang et al. [20] looks at the combined SS and resource allocation problem in a multi-band, multiple user CR network. The main goal is to improve the detecting thresholds and energy distribution strategy at the same time such that the overall throughput is maximized, even if the SS information is insufficient. In addition, the overall throughput of Secondary Users is modeled with a power limitation ranging from -30.0dBm to -10.0dBm in order to maintain the disturbance transmitted to PUs below set parameters. To lower the computational cost, a feasible low complexity SS and resource requirements method is devised. Finally, simulations are used to verify the efficacy of the suggested methods. The greatest power is allocated to the first, third, fifth, and sixth channels, where the chances of misdetection and false alert are minimal.

Zhang et al. [21] Deep reinforcement learning is used to overcome the issue of a cognitive heterogeneous channel's shortcomings, and a smart MCS selection strategy for primary transmissions is presented. The suggested technique includes a switched associated cost to reduce the network overhead generated by MCS switches. The simulation results demonstrate that even without the switching cost-factor, the proposed methodology primary transmission rate is 90-100 percent of the optimum level MCS, interference is 30.0% greater than that of the UCB method, and therefore is 100% greater than the Signal to noise ratio based method. However, the proposed switching cost factor method may achieve a better primary transmission speed than the benchmark approaches without increasing system overheads.

Y. Xu et al. [22] The suggested methodology encapsulates the latent link between various SS time series data and

collectively manages to combine sensed information with comparable frequency band states using the suggested beta procedure sticky hidden Markov chain for modelling methodology for SS in large and heterogeneous CRNs. Researchers used the suggested prediction method to anticipate Primary User regions dependent on categorization findings to provide a global spectrum picture for new SS. New spectrum change spots are discovered, and following refining, the prediction findings are substantially closer to reality, with the radius predicting error decreased to 3.10 percent. The results from the simulation reveal that the proposed architecture is effective.

Kaur et al. [23] proposes the oppositional oriented GWO, an integrative meta-heuristic technique that might have been utilized to increase the CSS system's sensor performance in a CR system. Simulation findings reveal that OBGWO provides improved solutions and increased convergent properties as comparing to other Classifier and other well-known optimization methods. As a consequence, when the suggested technique is used to optimize CSS weight vectors, it leads to a better chance of detecting for a given likelihood of false alarm. SNR (in dB) is between [3.7, 5.2] for 2 Secondary users, and $P_f = 0.20$ for Probabilities of False Alarm, and $P_f = 0.2790$ for Probability of Error. The overall error probability P_e attained by Grey Wolf Optimization is proven to become the least among all of the techniques. As a consequence, OBGWO looks to be a realistic alternative for developing a CSS system that works.

Ramesh et al. [24] presented a greedy, AI-assisted IoT architecture for SS. The spectrum is chosen using the various energy consumption models. Following that, LH is used to get access to the spectrum. To increase spectrum performance, the AI based spectrum allocation method is applied. When compared to other procedures, FK-LHSA was shown to have a 22 percent and 60 percent higher throughput. FK-LHSA is reported to lower the spectrum access delay or spectrum allocation time by 25% to 35%. Using proposed work, the proposed approach can minimize mistake rates between 39 and 50 percent. Using FK-LHSA, the accuracy was determined to be 96 percent. The findings recommends that the suggested models may minimize spectrum access time while also improving throughput and spectrum access accuracy.

Mokhtar et al. [25] proposes collaborative distributed spectrum sensing. SS performance in cooperative mobile communications may be problematic, resulting in a high number of reporting mistakes, particularly in crowded network circumstances. In such networks, the decision fusion process for cooperative users becomes very complicated, necessitating the detection of high-bandwidth traffic. The suggested approach is designed to improve channel errors in a severely Rayleigh fading environment. The findings demonstrate that using two phases of distribution clusters and selection fusion nodes (FNs) improves error by 0.42. The receiver operating characteristic (ROC) curve shows that both false alarms and detection probability have improved. Furthermore, the sensitivity is improved by 0.95.

Reference	Technique used	Result
[19]	Compressed SS Using SVM	SNR of 5 dB and, the P_D average is more than 50%. 50% cross-validation error for several training set
[20]	Joint SS	total throughput - 30dBm to -10dBm
[21]	Deep Reinforcement Learning SS and Coding Scheme	primary transmission rate is 90% ~ 100%
[22]	Mobile Collaborative Spectrum Sensing	radius predicting error decreased to 3.10%
[23]	Grey Wolf Optimizer based SS	Probability of error is 0.2795 SNR (in dB) lies in between [-3.7, -5.2]
[24]	5G Integrated SS using AI dependent framework	Throughput 22% and 60% reduces the error rate by 39-50%. accuracy 96%
[25]	collaborative distributed spectrum sensing	42% error improvement Sensitivity 95%

Table 2 Comparative table of recent studies

VI. CHALLENGES OF SPECTRUM SENSING

The complexity of IoT systems presents various obstacles for spectrum sensing. To begin with, CR modules for IoT systems vary from traditional radio modules in that they do not feature SS, spectrum selection, spectrum allocation, or mobility. New challenges arise when new entries are added. The next sections go into these issues in more detail.

Application Awareness: When constructing spectrum sensing methods, applications are often overlooked. However, with IoT systems including as intelligent towns, home automation, microgrids, wearable, healthcare, connected automobiles, and so on, the environment of application services is critical. Different approaches to broadband access, networking protocols, mobility, noise tolerance, and other aspects of IoT-driven systems are required for these applications. This implies that spectrum sensing techniques for IoT network must be developed with some flexibility so that they may be modified to adapt, change, and make good judgments.

Users' Mobility: The mobility constraints of IoT nodes vary depending on the application. Some users, for example, may well have higher mobility at all time, while others have limited movement during certain time periods, and the remainder are stuck. SS for IoT applications must overcome the problem of time and location adaptation to ensure seamless connection in all circumstances. Understanding the structure of mobility direction is a stream that may aid in the design and decision-making of SS techniques for IoT

systems, led by the difficulty of meeting the service quality for IoT applications.

Scaling, Higher Integrity, and Heterogeneous nature: Scalability is a critical need for the Internet of Things, since it indicates network development through time and across geographic boundaries. However, adding more secondary IoT users may cause performance of the system and throughput to suffer. Furthermore, SU in IoT network are diverse. As a result, alternative detector kinds and communication requirements may be required by secondary IoT users. When creating spectrum sensing strategies for IoT systems, the difficulty of heterogeneity and scalability emerges. In other words, expanding the system without requiring more human interaction and degrading overall network performance is extremely desired.

Cooperation and Learning: In IoT spectrum sensing, having to learn and feedback information from the environment are critical. This is done by emphasizing secondary IoT users' collaboration as a critical component of the dispersed learning process. In distributed spectrum sensing, many learning techniques such as incremental, agreement, and diffusion may be employed. One of the most important responsibilities is to select the most suitable scheme based on network statistics and secondary IoT user characteristics. Other major issues include determining the greatest benefit which can be derived, learning and collaboration needs, and the number of iterations required to complete the learning process.

VII. CONCLUSION

This work provides a method for the combined improvement of spectrum sharing and coding in cognitive spectrum collaborative scenarios, in addition to outlining many essential technology of cognitive spectrum collaboration and surveying their evolution. Given the complexity of the core network and the rise in network nodes in more general networks, related technologies such as deep learning may be used to minimize the parameters needed for reinforcement learning, enhance exploration efficiency, and speed convergence. Spectrum sensing was explored in this research as a possible solution to spectrum shortage in future IoT systems. It emphasized the difficulties and critical elements to consider while designing spectrum sensing techniques for IoT systems. We conclude that traditional spectrum sensing must be carefully adjusted to suit IoT standards based on the issues described. We also conducted a comparison of dispersed machine learning in the context of network of Things. Finally, there are a few unresolved concerns that need to be investigated further in order to use spectrum sensing strategies for IoT systems efficiently in the future. The influence of machine learning on IoT SS and the reliability of SS algorithms for IoT systems are only a few of them.

REFERENCES

- [1] M. Agiwal, A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," *IEEE Commun. Surveys Tuts.*, vol. 18, no. 3, pp. 1617–1655, 3rd Quart., 2016.
- [2] A. Gupta and E. R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," *IEEE Access*, vol. 3, pp. 1206–1232, Jul. 2015.
- [3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions," *Future Generat. Comput. Syst.*, vol. 29, no. 7, pp. 1645–1660, 2013.
- [4] V. Gazis, "A survey of standards for machine-to-machine and the Internet of Things," *IEEE Commun. Surveys Tuts.*, vol. 19, no. 1, pp. 482–511, 1st Quart., 2016.
- [5] A. Ghanbari, A. Laya, J. Alonso-Zarate, and J. Markendahl, "Business development in the Internet of Things: A matter of vertical cooperation," *IEEE Commun. Mag.*, vol. 55, no. 2, pp. 135–141, Feb. 2017.
- [6] D. Hortelano, T. Olivares, M. C. Ruiz, C. Garrido, and V. López, "From sensor networks to Internet of Things. Bluetooth low energy, a standard for this evolution," *Sensors*, vol. 17, no. 2, p. 372, Feb. 2017.
- [7] L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," *Comput. Netw.*, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.
- [8] A. Whitmore, A. Agarwal, and L. D. Xu, "The Internet of Things—A survey of topics and trends," *Inf. Syst. Frontiers*, vol. 17, no. 2, pp. 261–274, Apr. 2015.
- [9] Afzal et al., "The cognitive Internet of Things: A unified perspective," *Mobile Netw. Appl.*, vol. 20, no. 1, pp. 72–85, Feb. 2015.
- [10] Gupta, V., Beniwal, N.S., Singh, K.K. et al. Optimal cooperative spectrum sensing for 5G cognitive networks using evolutionary algorithms. *Peer-to-Peer Netw. Appl.* **14**, 3213–3224 (2021). <https://doi.org/10.1007/s12083-021-01159-6>
- [11] F. F. Digham, M. S. Alouini, and M. K. Simon, On the energy detection of unknown signals over fading channels, *IEEE Trans. Commun.*, vol. 55, no. 1, pp. 21–24, 2007.
- [12] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, Deep learning models for wireless signal classification with distributed low-cost spectrum sensors, *IEEE Trans. Cogn. Commun. Netw.*, vol. 4, no. 3, pp. 433–445, 2018.
- [13] G. Ganesan and Y. Li, Cooperative spectrum sensing in cognitive radio networks, in *Proc. 1st IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Networks*, Baltimore, MD, USA, 2005, pp. 137–143
- [14] F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey, *Comput. Networks*, vol. 50, no. 13, pp. 2127–2159, 2006.
- [15] Q. Zhao and B. M. Sadler, A survey of dynamic spectrum access, *IEEE Signal Process. Mag.*, vol. 24, no. 3, pp. 79–89, 2007
- [16] Y. Cassuto and A. Shokrollahi, Online fountain codes with low overhead, *IEEE Trans. Inf. Theory*, vol. 61, no. 6, pp. 3137–3149, 2015
- [17] X. L. Xu, Y. Zeng, Y. L. Guan, and L. Yuan, BATS code with unequal error protection, presented at 2016 IEEE Int. Conf. Communication Systems (ICCS), Shenzhen, China, 2016, pp. 1–6
- [18] Y. Cui, L. Wang, X. Wang, H. Y. Wang, and Y. N. Wang, FMTCP: A fountain code-based multipath transmission control protocol, *IEEE/ACM Trans. Netw.*, vol. 23, no. 2, pp. 465–478, 2015
- [19] M. Nazzal, O. Hasekioglu, A. R. Ekti, A. Görçin and H. Arslan, "Compressed Spectrum Sensing Using Sparse Recovery Convergence Patterns through Machine Learning Classification," 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2019, pp. 1–6, doi: 10.1109/PIMRC.2019.8904321.
- [20] X. Wang, S. Ekin and E. Serpedin, "Joint Spectrum Sensing and Resource Allocation in Multi-Band-Multi-User Cognitive Radio Networks," in *IEEE Transactions on Communications*, vol. 66, no. 8, pp. 3281–3293, Aug. 2018, doi: 10.1109/TCOMM.2018.2807432.
- [21] L. Zhang, J. Tan, Y. Liang, G. Feng and D. Niyato, "Deep Reinforcement Learning-Based Modulation and Coding Scheme Selection in Cognitive Heterogeneous Networks," in *IEEE Transactions on Wireless Communications*, vol. 18, no. 6, pp. 3281–3294, June 2019, doi: 10.1109/TWC.2019.2912754.
- [22] Y. Xu, P. Cheng, Z. Chen, Y. Li and B. Vucetic, "Mobile Collaborative Spectrum Sensing for Heterogeneous Networks: A Bayesian Machine Learning Approach," in *IEEE Transactions on Signal Processing*, vol. 66, no. 21, pp. 5634–5647, 1 Nov. 1, 2018, doi: 10.1109/TSP.2018.2870379.
- [23] Kaur, A., Sharma, S. & Mishra, A. An Efficient Opposition Based Grey Wolf Optimizer for Weight Adaptation in Cooperative Spectrum Sensing. *Wireless Pers. Commun.* **118**, 2345–2364 (2021). <https://doi.org/10.1007/s11277-021-08129-4>
- [24] Ramesh Sekaran, Surya Narayana Goddumarri, Suresh Kallam, Manikandan Ramachandran, Rizwan Patan, Deepak Gupta, "5G Integrated Spectrum Selection and Spectrum Access using AI-based

Frame work for IoT based Sensor Networks", Computer Networks, Volume 186, 2021, 107649, ISSN 1389-1286, <https://doi.org/10.1016/j.comnet.2020.107649>.

[25] Mokhtar, R.A., Saeed, R.A., Alhumyani, H. *et al.* Cluster mechanism for sensing data report using robust collaborative distributed spectrum sensing. *Cluster Comput* (2021). <https://doi.org/10.1007/s10586-021-03363-8>