

A Review on Various Designing Techniques Used for Net Zero Energy Buildings

Rohit Malviya

M.Tech Scholar

Department of Energy Technology

TRUBA Institute of Engineering and Information Technology
Bhopal (M.P.), India

rohitmalviya630@gmail.com

Shravan Vishwakarma

Asst Professor

Department of Energy Technology

TRUBA Institute of Engineering and Information Technology
Bhopal (M.P.), India

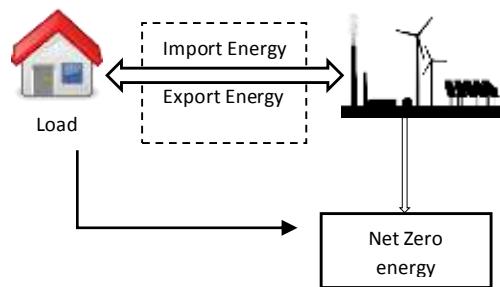
shravanmits@gmail.com

Abstract – Net-zero energy buildings (NZEBs) were proposed as a viable solution for reducing building energy usage and contamination emission levels. To achieve the desired specific objective, the setups and abilities of the deployed RES in NZEBs should be carefully chosen. The goal of this project is to develop an optimized design approach for a zero-energy building that takes into account the building's usage of energy. The continuous expansion of international energy demand as a result of industrialization and growing populations is presently a major source of concern.

Keywords – NZEBs, Renewable Energy Sources (RES), Energy-Efficiency.

I. INTRODUCTION

"A Net Zero Energy Building (NZEB) is a domestic or commercial structure with greatly reduced energy demands as a result of increases in productivity, allowing energy demands to be evenly distributed with sustainable technology." The researchers noted, however, that the "absolute zero energy framework" can be explained in a variety of ways, depending on the variable and the guidelines. Numerous areas of research here have spotlighted necessity energy efficiency techniques in NZEBs. The national grid is slowly shifting towards renewable energy systems. A zero energy (ZE), also referred as a zero energy building (ZNE), zero energy building (NZEB), or zero energy building, is a structure with zero net energy usage that indicates the extent of renewable energy produced on-site, or in other concepts from off-site renewable energy sources, utilizing inventions like heat pumps, high-efficiency window frames and soundproofing, and photovoltaic systems on a yearly basis. The goal is for these structures to emit fewer greenhouse gases into the atmosphere than comparable non-ZNE structures.


Buildings that are zero-energy are motivated not only by a desire to reduce environmental impact, but also by financial considerations. Zero-energy structures are financially viable thanks to tax breaks and energy savings. The Fast Zero Energy Building (nZEB) is a similar approach which has been accepted and executed by the European Union (EU). The European Union and other contracting parties states have authorized and executed a similar idea called the Fast Zero Energy Building (fZEB), with

the goal of having all buildings in the region meet nZEB standards by 2020.

The implementation of zero-energy buildings tends to make structures more energy efficient and lessens carbon emissions once they are operational; however, the embodied carbon of a building still causes a lot of pollution. Embodied carbon is the carbon emitted during the manufacture, transportation, and construction of a building's materials and structure; it accounts for 11% of global GHG emissions and 28% of global building sector emissions.

As CO₂ emission begins to compensate for a bigger proportion of a building's carbon (C) emissions, its relevance will develop. Embodied carbon has continued to rise to 47 percent of a building's lifespan emissions in some modern, energy efficient buildings. Paying attention on embodied carbon seems to be a part of optimizing design for impact on climate change, and achieving zero carbon emissions necessitates gently various environments than optimizing for energy efficiency alone.

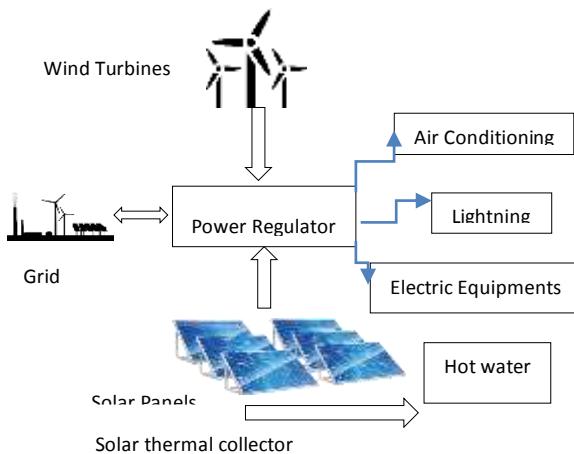

Employing low-carbon constructional substances, like straw-pipe, wood, linoleum, or cedar, is a method of reducing embodied carbon. Alternatives to decrease embodied emission levels emerge for substances such as concrete and steel, but they are unusual to be accessible on a massive scale in the near future. Finally, it was discovered that the best design point for reducing greenhouse gas emissions emerged to be four-story multiunit buildings made of low-carbon components, like those mentioned earlier in this section, which could serve as a model for low-carbon emission frameworks.

Figure.1.1 Four main established energy balances

Other NZEB interpretations can be developed on the basis of this principle. One is Net Zero Source Energy, something that balances spent and generated renewable energy, that can arrive from our location at the building's perimeter. As a result, this description refers to the energy necessary to execute renewables to the site as energy utilized. The names Net Zero Energy Expense and Net Zero Energy Emission levels demonstrate that their own weighting framework is not centered on energy.

The Net Zero Energy Expense description equalizes the overall price of energy purchased with the price of energy auctioned to the grid. Ultimately, Net Zero Energy Emissions equalizes CO₂ emissions from energy usage with emissions resisted from energy production.

Figure 1.2: Net zero energy design and renewable energy supplies

Even though building occupants are commonly believed of as energy consumers, the majority of energy, natural gas, and other sources of power are used to power BSS (building service systems) including air conditioning systems and heating. As a result, BSS performance is becoming a critical factor in NZEB assessment. BSS saves energy and NZEB achievement improves as a result of energy-efficient efforts made in the main structure of the constructing.

As a result, a non-defined energy-efficient measure has a direct effect on NEZB realization and assessment. NZEB primarily entails three types of energy-saving metrics: passive design, support system, and renewable energy sources

II. LITERATURE REVIEW

Petros J. Axaopoulos et al. [1] The effectiveness of commercial products of PV/T processes for electricity and water heating manufacturing is being assessed to be used in three European countries, and all under extremely separate climatological and financial circumstances. Financial spider diagram is used to represent how legislation and fuel costs effect the price of these processes, and helpful findings about how to evaluate their energising performance are managed to make.

Chua K.J. et al. [2] Air conditioning is essential for keeping comfort conditions in enclosed areas, especially in warm and humid environments, as mentioned. Air conditioning, which includes both cooling and dehumidifying, is now a requirement in residential applications, as well as industrial activities. It accounts for a significant portion of a building's or facility's energy consumption. Heating, ventilation, and air-conditioning (HVAC) can account for more than half of a building's overall energy usage in tropical climates. This large number is due to the heavy reliance on cooling technologies to eliminate both sensible and latent heating loads.

Georgios Tsakiris, et al. [13] To analyze the impact of solar potential versus photovoltaic cells and solar power plants in typical housing developments, researchers looked at solar potential versus photo-voltaics and solar water heating in typical housing developments (NZEB). Alternative scenarios for photo-voltaic and solar system capacity factor in various locations and climate changes are analysed from both a technological and financial standpoint. The findings show that photo-voltaics can encompass a residence's building's yearly electrical needs with a repayment method of less than seven years in any particular instance.

Shihao Zhang et al. [14] A hybrid energy system for a net-zero energy reduced residential complex in Shanghai, China, was defined. A water-based photovoltaic/thermal (PVT) collector and a ground water-source heat pump make up this hybrid renewable energy system (GWSHP). Throughout the summers and winters, the hybrid system is intended to produce heating, refrigeration, and electricity employing solar energy and earth surface water energy, respectively. Ground tests were conducted on the PVT receiver and GWSHP to determine their thermal performance, and then computational methods for the PVT collector and GWSHP performance curve were developed by the researchers using experimental results.

R.Z. Wang et al. [15] Throughout a literature survey, proffered a personal tour of the NZEB assessment. To confirm the research question and the science and technology restrict for the NZEB evaluation, an overall view of the NZEB's energy efficiency different definitions is offered. As a result, an overview of the widely used research technique, the tool, and the performance review in the evaluation is offered for the methodological part. This section also covers the use of Life Cycle Assessment (Life Cycle Assessment) in NZEB assessments, as well as the role of Life Cycle Assessment in publicising a well-defined NZEB.

Georgios Tsakiris, et al. [16] To determine the effects of solar resource versus photovoltaic devices and solar thermal energy in classic apartment complexes, researchers looked at solar potential vs photovoltaics and solar thermal energy in typical residential buildings (NZEB). Different options for photovoltaic and solar system installed capacity in numerous places and weather conditions are analysed from both a technological and financial standpoint. The findings show that photovoltaics can cover a residential structure's annual energy requirements with a repayment method with less than 7 years in just about any case.

Sartoriet al. [17] presented a logical framework for determining Net ZEB definitions Evaluating the definition's criteria and choosing the appropriate options becomes a method for creating Net ZEB interpretations in a structured manner. The concept of a balance sheet is central to the definition, and two major types of balance sheets are identified: import/export balance and load/production rebalancing. A monthly net balance that is eased is also referred to as a common ground between the two.

Shuai Deng et al. [20] NZEB (Net Zero Energy Building) is viewed as an integrated solution to the problems of energy conservation, environmental protection, and CO₂ emission reduction in the building sector, according to the company. If enough renewable energy could be used, NZEB could also be conceivable with power generation. In addition, various building technology systems utilising renewable energy sources have been thoroughly investigated for potential uses in the NZEB. Every one of these new functionality push the technological boundaries of traditional energy-efficient buildings, putting a larger emphasis on building technology's long-term development, and posing a challenging problem for the NZEB's performance evaluation work.

A.J. Marszal, P. Heiselberg [21] It really should be mentioned that the authors are aware of the limitations of this LCC analysis, particularly (1) the data's local context. (2) PV is the only renewable energy technology that is considered for power generation. (3) the lower price tier due to the BOLIG project's huge scale, and (4) the unique modular building construction. In addition, the authors confirm that the difference in cost between current LCC instances is minor. Leaving energy costs out of the study, on the other hand, made the task more reliable even though energy costs are highly unpredictable and a domestically predictor variables that can be influenced by a variety of factors.

Table 1: Contribution of Researchers for NZEBs

Author	Year	Description	Drawbacks
Mehrdad et al.	2021	Thermal and visual comfort in zero energy buildings. PV panels were integrated with the building site for on-site production of electricity towards ZEB level.	Energy optimization was not investigated.
Adeli et al.	2020	Applied thermal comfort in zero energy buildings.	Solar power generation system was not enough to maintain thermal comfort in building.
ParaschivSpiru et al.	2020	Applied solar air heater for zero energy building. Lost heat recovery at a rate ranging between 9.8-12.51%.	Building is not net zero energy building as it depends on other conventional resources.

Jianguo et al.	2019	Building performance optimization was performed using ANN.	Mainly focused on optimization of building designs. This is quite expensive for residential areas.
Xian Li et al.	2019	Performed heat insulation using solar glasses and reduced the energy consumption by 30-40%. The cost was obtained to be 5920 \$/year.	Not economically feasible at the current climatic scenario.
Wei et al.	2018	Designed for HVAC in zero energy building. Reduced the energy wastage.	Expensive modelling.

III. CONCLUSION

The energy consumption of residential buildings has increased rapidly in recent years, posing a challenge for zero-energy residential building systems (ZERB), which aim to significantly reduce the energy consumption of residential buildings. Therefore, how to relieve ZERB has become a hot but difficult topic. The configurations and expertise of implemented RES in NZEBs should indeed be carefully chosen to achieve the desired specific objective. The goal of this project is to create an optimised design approach for a zero-energy building that considers the building's energy usage. The constant rise in global energy demand as a result of industrialization and growing populations is currently a major cause of worry.

REFERENCES

- [1] Petros J. Axaopoulos, Emmanouil D. Fylladitakis "Performance and economic evaluation of a hybrid Photovoltaic/Thermal solar system for residential applications" July 2013, Energy and Buildings 65
- [2] Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
- [3] GeorgiosTsalikis, GeorgiosMartinopoulos "Solar Energy Systems Potential for Nearly Net Zero Energy Residential Buildings" Solar Energy, vol. 115, pp. :743–756, May 2015.
- [4] Shihao Zhang, ZhiZhuang "Applicability Study on a Hybrid Renewable Energy System for Net-Zero Energy House in Shanghai", Energy Procedia, Vol. 88, Pages 768-774, June 2016.
- [5] R.Z. Wang, Shuai Deng "How to evaluate performance of net zero energy building – A literature research" Energy, vol. 71. July 2014
- [6] GeorgiosTsalikis ,GeorgiosMartinopoulos "solar Energy Systems Potential for Nearly Net Zero Energy Residential Buildings", Solar Energy, vol. 115 pp. 743–756 , May 2015
- [7] I. Sartori, A. Napolitano, and K. Voss, "Net zero energy buildings: A consistent definition framework," Energy Build., vol. 48, pp. 220–232, May 2012.
- [8] Shuai Deng, R.Z. Wang "How to evaluate performance of net zero energy building - A literature research" energy, vol. 71, pp. 1-16, 2014.
- [9] Li, X., Lin, A., Young, C. H., Dai, Y., & Wang, C. H. (2019). Energetic and economic evaluation of hybrid solar energy systems in a residential

net-zero energy building. *Applied Energy*, 254(August), 113709.
<https://doi.org/10.1016/j.apenergy.2019.113709>